196 research outputs found

    Multiscale Finite Element Methods for Nonlinear Problems and their Applications

    Get PDF
    In this paper we propose a generalization of multiscale finite element methods (Ms-FEM) to nonlinear problems. We study the convergence of the proposed method for nonlinear elliptic equations and propose an oversampling technique. Numerical examples demonstrate that the over-sampling technique greatly reduces the error. The application of MsFEM to porous media flows is considered. Finally, we describe further generalizations of MsFEM to nonlinear time-dependent equations and discuss the convergence of the method for various kinds of heterogeneities

    Removing the cell resonance error in the multiscale finite element method via a Petrov-Galerkin formulation

    Get PDF
    We continue the study of the nonconforming multiscale finite element method (Ms- FEM) introduced in 17, 14 for second order elliptic equations with highly oscillatory coefficients. The main difficulty in MsFEM, as well as other numerical upscaling methods, is the scale resonance effect. It has been show that the leading order resonance error can be effectively removed by using an over-sampling technique. Nonetheless, there is still a secondary cell resonance error of O(Š„^2/h^2). Here, we introduce a Petrov-Galerkin MsFEM formulation with nonconforming multiscale trial functions and linear test functions. We show that the cell resonance error is eliminated in this formulation and hence the convergence rate is greatly improved. Moreover, we show that a similar formulation can be used to enhance the convergence of an immersed-interface finite element method for elliptic interface problems

    Expanded mixed multiscale finite element methods and their applications for flows in porous media

    Get PDF
    We develop a family of expanded mixed Multiscale Finite Element Methods (MsFEMs) and their hybridizations for second-order elliptic equations. This formulation expands the standard mixed Multiscale Finite Element formulation in the sense that four unknowns (hybrid formulation) are solved simultaneously: pressure, gradient of pressure, velocity and Lagrange multipliers. We use multiscale basis functions for the both velocity and gradient of pressure. In the expanded mixed MsFEM framework, we consider both cases of separable-scale and non-separable spatial scales. We specifically analyze the methods in three categories: periodic separable scales, GG- convergence separable scales, and continuum scales. When there is no scale separation, using some global information can improve accuracy for the expanded mixed MsFEMs. We present rigorous convergence analysis for expanded mixed MsFEMs. The analysis includes both conforming and nonconforming expanded mixed MsFEM. Numerical results are presented for various multiscale models and flows in porous media with shales to illustrate the efficiency of the expanded mixed MsFEMs.Comment: 33 page

    Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods

    Get PDF
    In this paper, we discuss a general multiscale model reduction framework based on multiscale finite element methods. We give a brief overview of related multiscale methods. Due to page limitations, the overview focuses on a few related methods and is not intended to be comprehensive. We present a general adaptive multiscale model reduction framework, the Generalized Multiscale Finite Element Method. Besides the method's basic outline, we discuss some important ingredients needed for the method's success. We also discuss several applications. The proposed method allows performing local model reduction in the presence of high contrast and no scale separation

    Convergence of a nonconforming multiscale finite element method

    Get PDF
    The multiscale finite element method (MsFEM) [T. Y. Hou, X. H. Wu, and Z. Cai, Math. Comp., 1998, to appear; T. Y. Hou and X. H. Wu, J. Comput. Phys., 134 (1997), pp. 169-189] has been introduced to capture the large scale solutions of elliptic equations with highly oscillatory coefficients. This is accomplished by constructing the multiscale base functions from the local solutions of the elliptic operator. Our previous study reveals that the leading order error in this approach is caused by the "resonant sampling," which leads to large error when the mesh size is close to the small scale of the continuous problem. Similar difficulty also arises in numerical upscaling methods. An oversampling technique has been introduced to alleviate this difficulty [T. Y. Hou and X. H. Wu, J. Comput. Phys., 134 (1997), pp. 169-189]. A consequence of the oversampling method is that the resulting finite element method is no longer conforming. Here we give a detailed analysis of the nonconforming error. Our analysis also reveals a new cell resonance error which is caused by the mismatch between the mesh size and the wavelength of the small scale. We show that the cell resonance error is of lower order. Our numerical experiments demonstrate that the cell resonance error is generically small and is difficult to observe in practice

    A Framework for Modeling Subgrid Effects for Two-Phase Flows in Porous Media

    Get PDF
    In this paper, we study upscaling for two-phase flows in strongly heterogeneous porous media. Upscaling a hyperbolic convection equation is known to be very difficult due to the presence of nonlocal memory effects. Even for a linear hyperbolic equation with a shear velocity field, the upscaled equation involves a nonlocal history dependent diffusion term, which is not amenable to computation. By performing a systematic multiscale analysis, we derive coupled equations for the average and the fluctuations for the two-phase flow. The homogenized equations for the coupled system are obtained by projecting the fluctuations onto a suitable subspace. This projection corresponds exactly to averaging along streamlines of the flow. Convergence of the multiscale analysis is verified numerically. Moreover, we show how to apply this multiscale analysis to upscale two-phase flows in practical applications
    • ā€¦
    corecore