36 research outputs found

    Sharp Concentration of Hitting Size for Random Set Systems

    Full text link
    Consider the random set system of {1,2,...,n}, where each subset in the power set is chosen independently with probability p. A set H is said to be a hitting set if it intersects each chosen set. The second moment method is used to exhibit the sharp concentration of the minimal size of H for a variety of values of p.Comment: 11 page

    On the strong chromatic number of random graphs

    Full text link
    Let G be a graph with n vertices, and let k be an integer dividing n. G is said to be strongly k-colorable if for every partition of V(G) into disjoint sets V_1 \cup ... \cup V_r, all of size exactly k, there exists a proper vertex k-coloring of G with each color appearing exactly once in each V_i. In the case when k does not divide n, G is defined to be strongly k-colorable if the graph obtained by adding k \lceil n/k \rceil - n isolated vertices is strongly k-colorable. The strong chromatic number of G is the minimum k for which G is strongly k-colorable. In this paper, we study the behavior of this parameter for the random graph G(n, p). In the dense case when p >> n^{-1/3}, we prove that the strong chromatic number is a.s. concentrated on one value \Delta+1, where \Delta is the maximum degree of the graph. We also obtain several weaker results for sparse random graphs.Comment: 16 page
    corecore