44 research outputs found

    Hamilton cycles in hypergraphs below the Dirac threshold

    Get PDF
    We establish a precise characterisation of 44-uniform hypergraphs with minimum codegree close to n/2n/2 which contain a Hamilton 22-cycle. As an immediate corollary we identify the exact Dirac threshold for Hamilton 22-cycles in 44-uniform hypergraphs. Moreover, by derandomising the proof of our characterisation we provide a polynomial-time algorithm which, given a 44-uniform hypergraph HH with minimum codegree close to n/2n/2, either finds a Hamilton 22-cycle in HH or provides a certificate that no such cycle exists. This surprising result stands in contrast to the graph setting, in which below the Dirac threshold it is NP-hard to determine if a graph is Hamiltonian. We also consider tight Hamilton cycles in kk-uniform hypergraphs HH for k≥3k \geq 3, giving a series of reductions to show that it is NP-hard to determine whether a kk-uniform hypergraph HH with minimum degree δ(H)≥12∣V(H)∣−O(1)\delta(H) \geq \frac{1}{2}|V(H)| - O(1) contains a tight Hamilton cycle. It is therefore unlikely that a similar characterisation can be obtained for tight Hamilton cycles.Comment: v2: minor revisions in response to reviewer comments, most pseudocode and details of the polynomial time reduction moved to the appendix which will not appear in the printed version of the paper. To appear in Journal of Combinatorial Theory, Series

    The minimum vertex degree for an almost-spanning tight cycle in a 33-uniform hypergraph

    Get PDF
    We prove that any 33-uniform hypergraph whose minimum vertex degree is at least (59+o(1))(n2)\left(\frac{5}{9} + o(1) \right)\binom{n}{2} admits an almost-spanning tight cycle, that is, a tight cycle leaving o(n)o(n) vertices uncovered. The bound on the vertex degree is asymptotically best possible. Our proof uses the hypergraph regularity method, and in particular a recent version of the hypergraph regularity lemma proved by Allen, B\"ottcher, Cooley and Mycroft.Comment: 10 pages. arXiv admin note: text overlap with arXiv:1411.495

    Tight Euler tours in uniform hypergraphs - computational aspects

    Full text link
    By a tight tour in a kk-uniform hypergraph HH we mean any sequence of its vertices (w0,w1,…,ws−1)(w_0,w_1,\ldots,w_{s-1}) such that for all i=0,…,s−1i=0,\ldots,s-1 the set ei={wi,wi+1…,wi+k−1}e_i=\{w_i,w_{i+1}\ldots,w_{i+k-1}\} is an edge of HH (where operations on indices are computed modulo ss) and the sets eie_i for i=0,…,s−1i=0,\ldots,s-1 are pairwise different. A tight tour in HH is a tight Euler tour if it contains all edges of HH. We prove that the problem of deciding if a given 33-uniform hypergraph has a tight Euler tour is NP-complete, and that it cannot be solved in time 2o(m)2^{o(m)} (where mm is the number of edges in the input hypergraph), unless the ETH fails. We also present an exact exponential algorithm for the problem, whose time complexity matches this lower bound, and the space complexity is polynomial. In fact, this algorithm solves a more general problem of computing the number of tight Euler tours in a given uniform hypergraph

    On powers of tight Hamilton cycles in randomly perturbed hypergraphs

    Full text link
    We show that for k≥3k \geq 3, r≥2r\geq 2 and α>0\alpha> 0, there exists ε>0\varepsilon > 0 such that if p=p(n)≥n−(k+r−2k−1)−1−εp=p(n)\geq n^{-{\binom{k+r-2}{k-1}}^{-1}-\varepsilon} and HH is a kk-uniform hypergraph on nn vertices with minimum codegree at least αn\alpha n, then asymptotically almost surely the union H∪G(k)(n,p)H\cup G^{(k)}(n,p) contains the rthr^{th} power of a tight Hamilton cycle. The bound on pp is optimal up to the value of ε\varepsilon and this answers a question of Bedenknecht, Han, Kohayakawa and Mota

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    Graphs with few spanning substructures

    Get PDF
    In this thesis, we investigate a number of problems related to spanning substructures of graphs. The first few chapters consider extremal problems related to the number of forest-like structures of a graph. We prove that one can find a threshold graph which contains the minimum number of spanning pseudoforests, as well as rooted spanning forests, amongst all graphs on n vertices and e edges. This has left the open question of exactly which threshold graphs have the minimum number of these spanning substructures. We make progress towards this question in particular cases of spanning pseudoforests. The final chapter takes on a different flavor---we determine the complexity of a problem related to Hamilton cycles in hypergraphs. Dirac\u27s theorem states that graphs with minimum degree at least half the size of the vertex set are guaranteed to have a Hamilton cycle. In 1993, Karpinksi, Dahlhaus, and Hajnal proved that for any c\u3c1/2, the problem of determining whether a graph with minimum degree at least cn has a Hamilton cycle is NP-complete. The analogous problem in hypergraphs, for both a Dirac-type condition and complexity, are just as interesting. We prove that for classes of hypergraphs with certain minimum vertex degree conditions, the problem of determining whether or not they contain an l-Hamilton cycle is NP-complete. Advisor: Professor Jamie Radcliff
    corecore