4,111 research outputs found

    The Complexity of Change

    Full text link
    Many combinatorial problems can be formulated as "Can I transform configuration 1 into configuration 2, if certain transformations only are allowed?". An example of such a question is: given two k-colourings of a graph, can I transform the first k-colouring into the second one, by recolouring one vertex at a time, and always maintaining a proper k-colouring? Another example is: given two solutions of a SAT-instance, can I transform the first solution into the second one, by changing the truth value one variable at a time, and always maintaining a solution of the SAT-instance? Other examples can be found in many classical puzzles, such as the 15-Puzzle and Rubik's Cube. In this survey we shall give an overview of some older and more recent work on this type of problem. The emphasis will be on the computational complexity of the problems: how hard is it to decide if a certain transformation is possible or not?Comment: 28 pages, 6 figure

    Improved Lower Bounds for Testing Triangle-freeness in Boolean Functions via Fast Matrix Multiplication

    Get PDF
    Understanding the query complexity for testing linear-invariant properties has been a central open problem in the study of algebraic property testing. Triangle-freeness in Boolean functions is a simple property whose testing complexity is unknown. Three Boolean functions f1f_1, f2f_2 and f3:F2kβ†’{0,1}f_3: \mathbb{F}_2^k \to \{0, 1\} are said to be triangle free if there is no x,y∈F2kx, y \in \mathbb{F}_2^k such that f1(x)=f2(y)=f3(x+y)=1f_1(x) = f_2(y) = f_3(x + y) = 1. This property is known to be strongly testable (Green 2005), but the number of queries needed is upper-bounded only by a tower of twos whose height is polynomial in 1 / \epsislon, where \epsislon is the distance between the tested function triple and triangle-freeness, i.e., the minimum fraction of function values that need to be modified to make the triple triangle free. A lower bound of (1/Ο΅)2.423(1 / \epsilon)^{2.423} for any one-sided tester was given by Bhattacharyya and Xie (2010). In this work we improve this bound to (1/Ο΅)6.619(1 / \epsilon)^{6.619}. Interestingly, we prove this by way of a combinatorial construction called \emph{uniquely solvable puzzles} that was at the heart of Coppersmith and Winograd's renowned matrix multiplication algorithm

    Move-minimizing puzzles, diamond-colored modular and distributive lattices, and poset models for Weyl group symmetric functions

    Full text link
    The move-minimizing puzzles presented here are certain types of one-player combinatorial games that are shown to have explicit solutions whenever they can be encoded in a certain way as diamond-colored modular and distributive lattices. Such lattices can also arise naturally as models for certain algebraic objects, namely Weyl group symmetric functions and their companion semisimple Lie algebra representations. The motivation for this paper is therefore both diversional and algebraic: To show how some recreational move-minimizing puzzles can be solved explicitly within an order-theoretic context and also to realize some such puzzles as combinatorial models for symmetric functions associated with certain fundamental representations of the symplectic and odd orthogonal Lie algebras
    • …
    corecore