28,098 research outputs found

    Stochastic Constraint Programming

    Full text link
    To model combinatorial decision problems involving uncertainty and probability, we introduce stochastic constraint programming. Stochastic constraint programs contain both decision variables (which we can set) and stochastic variables (which follow a probability distribution). They combine together the best features of traditional constraint satisfaction, stochastic integer programming, and stochastic satisfiability. We give a semantics for stochastic constraint programs, and propose a number of complete algorithms and approximation procedures. Finally, we discuss a number of extensions of stochastic constraint programming to relax various assumptions like the independence between stochastic variables, and compare with other approaches for decision making under uncertainty.Comment: Proceedings of the 15th Eureopean Conference on Artificial Intelligenc

    Lower Complexity Bounds for Lifted Inference

    Full text link
    One of the big challenges in the development of probabilistic relational (or probabilistic logical) modeling and learning frameworks is the design of inference techniques that operate on the level of the abstract model representation language, rather than on the level of ground, propositional instances of the model. Numerous approaches for such "lifted inference" techniques have been proposed. While it has been demonstrated that these techniques will lead to significantly more efficient inference on some specific models, there are only very recent and still quite restricted results that show the feasibility of lifted inference on certain syntactically defined classes of models. Lower complexity bounds that imply some limitations for the feasibility of lifted inference on more expressive model classes were established early on in (Jaeger 2000). However, it is not immediate that these results also apply to the type of modeling languages that currently receive the most attention, i.e., weighted, quantifier-free formulas. In this paper we extend these earlier results, and show that under the assumption that NETIME =/= ETIME, there is no polynomial lifted inference algorithm for knowledge bases of weighted, quantifier- and function-free formulas. Further strengthening earlier results, this is also shown to hold for approximate inference, and for knowledge bases not containing the equality predicate.Comment: To appear in Theory and Practice of Logic Programming (TPLP

    Structurally Tractable Uncertain Data

    Full text link
    Many data management applications must deal with data which is uncertain, incomplete, or noisy. However, on existing uncertain data representations, we cannot tractably perform the important query evaluation tasks of determining query possibility, certainty, or probability: these problems are hard on arbitrary uncertain input instances. We thus ask whether we could restrict the structure of uncertain data so as to guarantee the tractability of exact query evaluation. We present our tractability results for tree and tree-like uncertain data, and a vision for probabilistic rule reasoning. We also study uncertainty about order, proposing a suitable representation, and study uncertain data conditioned by additional observations.Comment: 11 pages, 1 figure, 1 table. To appear in SIGMOD/PODS PhD Symposium 201
    • …
    corecore