105 research outputs found

    The Complexity of Pebbling in Diameter Two Graphs*

    Get PDF
    Given a simple, connected graph, a pebbling configuration is a function from its vertex set to the nonnegative integers. A pebbling move between adjacent vertices removes two pebbles from one vertex and adds one pebble to the other. A vertex r is said to be reachable from a configuration if there exists a sequence of pebbling moves that places one pebble on r. A configuration is solvable if every vertex is reachable. We prove tight bounds on the number of vertices with two and three pebbles that an unsolvable configuration on a diameter two graph can have in terms of the size of the graph. We also prove that determining reachability of a vertex is NP-complete, even in graphs of diameter two

    Modified Linear Programming and Class 0 Bounds for Graph Pebbling

    Full text link
    Given a configuration of pebbles on the vertices of a connected graph GG, a \emph{pebbling move} removes two pebbles from some vertex and places one pebble on an adjacent vertex. The \emph{pebbling number} of a graph GG is the smallest integer kk such that for each vertex vv and each configuration of kk pebbles on GG there is a sequence of pebbling moves that places at least one pebble on vv. First, we improve on results of Hurlbert, who introduced a linear optimization technique for graph pebbling. In particular, we use a different set of weight functions, based on graphs more general than trees. We apply this new idea to some graphs from Hurlbert's paper to give improved bounds on their pebbling numbers. Second, we investigate the structure of Class 0 graphs with few edges. We show that every nn-vertex Class 0 graph has at least 53n−113\frac53n - \frac{11}3 edges. This disproves a conjecture of Blasiak et al. For diameter 2 graphs, we strengthen this lower bound to 2n−52n - 5, which is best possible. Further, we characterize the graphs where the bound holds with equality and extend the argument to obtain an identical bound for diameter 2 graphs with no cut-vertex.Comment: 19 pages, 8 figure

    Pebbling in Semi-2-Trees

    Full text link
    Graph pebbling is a network model for transporting discrete resources that are consumed in transit. Deciding whether a given configuration on a particular graph can reach a specified target is NP{\sf NP}-complete, even for diameter two graphs, and deciding whether the pebbling number has a prescribed upper bound is Π2P\Pi_2^{\sf P}-complete. Recently we proved that the pebbling number of a split graph can be computed in polynomial time. This paper advances the program of finding other polynomial classes, moving away from the large tree width, small diameter case (such as split graphs) to small tree width, large diameter, continuing an investigation on the important subfamily of chordal graphs called kk-trees. In particular, we provide a formula, that can be calculated in polynomial time, for the pebbling number of any semi-2-tree, falling shy of the result for the full class of 2-trees.Comment: Revised numerous arguments for clarity and added technical lemmas to support proof of main theorem bette

    Critical Pebbling Numbers of Graphs

    Full text link
    We define three new pebbling parameters of a connected graph GG, the rr-, gg-, and uu-critical pebbling numbers. Together with the pebbling number, the optimal pebbling number, the number of vertices nn and the diameter dd of the graph, this yields 7 graph parameters. We determine the relationships between these parameters. We investigate properties of the rr-critical pebbling number, and distinguish between greedy graphs, thrifty graphs, and graphs for which the rr-critical pebbling number is 2d2^d.Comment: 26 page

    A linear optimization technique for graph pebbling

    Full text link
    Graph pebbling is a network model for studying whether or not a given supply of discrete pebbles can satisfy a given demand via pebbling moves. A pebbling move across an edge of a graph takes two pebbles from one endpoint and places one pebble at the other endpoint; the other pebble is lost in transit as a toll. It has been shown that deciding whether a supply can meet a demand on a graph is NP-complete. The pebbling number of a graph is the smallest t such that every supply of t pebbles can satisfy every demand of one pebble. Deciding if the pebbling number is at most k is \Pi_2^P-complete. In this paper we develop a tool, called the Weight Function Lemma, for computing upper bounds and sometimes exact values for pebbling numbers with the assistance of linear optimization. With this tool we are able to calculate the pebbling numbers of much larger graphs than in previous algorithms, and much more quickly as well. We also obtain results for many families of graphs, in many cases by hand, with much simpler and remarkably shorter proofs than given in previously existing arguments (certificates typically of size at most the number of vertices times the maximum degree), especially for highly symmetric graphs. Here we apply the Weight Function Lemma to several specific graphs, including the Petersen, Lemke, 4th weak Bruhat, Lemke squared, and two random graphs, as well as to a number of infinite families of graphs, such as trees, cycles, graph powers of cycles, cubes, and some generalized Petersen and Coxeter graphs. This partly answers a question of Pachter, et al., by computing the pebbling exponent of cycles to within an asymptotically small range. It is conceivable that this method yields an approximation algorithm for graph pebbling
    • …
    corecore