457,075 research outputs found

    The complexity of conservative finite-valued CSPs

    Full text link
    We study the complexity of valued constraint satisfaction problems (VCSP). A problem from VCSP is characterised by a \emph{constraint language}, a fixed set of cost functions over a finite domain. An instance of the problem is specified by a sum of cost functions from the language and the goal is to minimise the sum. We consider the case of so-called \emph{conservative} languages; that is, languages containing all unary cost functions, thus allowing arbitrary restrictions on the domains of the variables. This problem has been studied by Bulatov [LICS'03] for {0,}\{0,\infty\}-valued languages (i.e. CSP), by Cohen~\etal\ (AIJ'06) for Boolean domains, by Deineko et al. (JACM'08) for {0,1}\{0,1\}-valued cost functions (i.e. Max-CSP), and by Takhanov (STACS'10) for {0,}\{0,\infty\}-valued languages containing all finite-valued unary cost functions (i.e. Min-Cost-Hom). We give an elementary proof of a complete complexity classification of conservative finite-valued languages: we show that every conservative finite-valued language is either tractable or NP-hard. This is the \emph{first} dichotomy result for finite-valued VCSPs over non-Boolean domains.Comment: 15 page

    Cohomology in Grothendieck Topologies and Lower Bounds in Boolean Complexity

    Full text link
    This paper is motivated by questions such as P vs. NP and other questions in Boolean complexity theory. We describe an approach to attacking such questions with cohomology, and we show that using Grothendieck topologies and other ideas from the Grothendieck school gives new hope for such an attack. We focus on circuit depth complexity, and consider only finite topological spaces or Grothendieck topologies based on finite categories; as such, we do not use algebraic geometry or manifolds. Given two sheaves on a Grothendieck topology, their "cohomological complexity" is the sum of the dimensions of their Ext groups. We seek to model the depth complexity of Boolean functions by the cohomological complexity of sheaves on a Grothendieck topology. We propose that the logical AND of two Boolean functions will have its corresponding cohomological complexity bounded in terms of those of the two functions using ``virtual zero extensions.'' We propose that the logical negation of a function will have its corresponding cohomological complexity equal to that of the original function using duality theory. We explain these approaches and show that they are stable under pullbacks and base change. It is the subject of ongoing work to achieve AND and negation bounds simultaneously in a way that yields an interesting depth lower bound.Comment: 70 pages, abstract corrected and modifie

    The complexity of finite-valued CSPs

    Full text link
    We study the computational complexity of exact minimisation of rational-valued discrete functions. Let Γ\Gamma be a set of rational-valued functions on a fixed finite domain; such a set is called a finite-valued constraint language. The valued constraint satisfaction problem, VCSP(Γ)\operatorname{VCSP}(\Gamma), is the problem of minimising a function given as a sum of functions from Γ\Gamma. We establish a dichotomy theorem with respect to exact solvability for all finite-valued constraint languages defined on domains of arbitrary finite size. We show that every constraint language Γ\Gamma either admits a binary symmetric fractional polymorphism in which case the basic linear programming relaxation solves any instance of VCSP(Γ)\operatorname{VCSP}(\Gamma) exactly, or Γ\Gamma satisfies a simple hardness condition that allows for a polynomial-time reduction from Max-Cut to VCSP(Γ)\operatorname{VCSP}(\Gamma)
    corecore