3 research outputs found

    Hypergraph-Based Interconnection Networks for Large Multicomputers

    Get PDF
    This thesis deals with issues pertaining to multicomputer interconnection networks namely topology, technology, switching method, and routing algorithm. It argues that a new class of regular low-dimensional hypergraph networks, the distributed crossbar switch hypermesh (DCSH), represents a promising alternative high-performance interconnection network for future large multicomputers to graph networks such as meshes, tori, and binary n-cubes, which have been widely used in current multicomputers. Channels in existing hypergraph and graph structures suffer from bandwidth limitations imposed by implementation technology. The first part of the thesis shows how the low-dimensional DCSH can use an innovative implementation scheme to alleviate this problem. It relies on the separation of processing and communication functions by physical layering in order to accommodate high wiring density and necessary message buffering, improving performance considerably. Various mathematical models of the DCSH, validated through discrete-event simulation, are then introduced. Effects of different switching methods (e.g., wormhole routing, virtual cut-through, and message switching), routing algorithms (e.g., restricted and random), and different switching element designs are investigated. Further, the impact on performance of different communication patterns, such as those including locality and hot-spots, are assessed. The remainder of the thesis compares the DCSH to other common hypergraph and graph networks assuming different implementation technologies, such as VLSI, multiple-chip technology, and the new layered implementation scheme. More realistic assumptions are introduced such as pipeline-bit transmission and non-zero delays through switching elements. The results show that the proposed structure has superior characteristics assuming equal implementation cost in both VLSI and multiple-chip technology. Furthermore, optimal performance is offered by the new layered implementation

    Performance evaluation of distributed crossbar switch hypermesh

    Get PDF
    The interconnection network is one of the most crucial components in any multicomputer as it greatly influences the overall system performance. Several recent studies have suggested that hypergraph networks, such as the Distributed Crossbar Switch Hypermesh (DCSH), exhibit superior topological and performance characteristics over many traditional graph networks, e.g. k-ary n-cubes. Previous work on the DCSH has focused on issues related to implementation and performance comparisons with existing networks. These comparisons have so far been confined to deterministic routing and unicast (one-to-one) communication. Using analytical models validated through simulation experiments, this thesis extends that analysis to include adaptive routing and broadcast communication. The study concentrates on wormhole switching, which has been widely adopted in practical multicomputers, thanks to its low buffering requirement and the reduced dependence of latency on distance under low traffic. Adaptive routing has recently been proposed as a means of improving network performance, but while the comparative evaluation of adaptive and deterministic routing has been widely reported in the literature, the focus has been on graph networks. The first part of this thesis deals with adaptive routing, developing an analytical model to measure latency in the DCSH, and which is used throughout the rest of the work for performance comparisons. Also, an investigation of different routing algorithms in this network is presented. Conventional k-ary n-cubes have been the underlying topology of contemporary multicomputers, but it is only recently that adaptive routing has been incorporated into such systems. The thesis studies the relative performance merits of the DCSH and k-ary n-cubes under adaptive routing strategy. The analysis takes into consideration real-world factors, such as router complexity and bandwidth constraints imposed by implementation technology. However, in any network, the routing of unicast messages is not the only factor in traffic control. In many situations (for example, parallel iterative algorithms, memory update and invalidation procedures in shared memory systems, global notification of network errors), there is a significant requirement for broadcast traffic. The DCSH, by virtue of its use of hypergraph links, can implement broadcast operations particularly efficiently. The second part of the thesis examines how the DCSH and k-ary n-cube performance is affected by the presence of a broadcast traffic component. In general, these studies demonstrate that because of their relatively high diameter, k-ary n-cubes perform poorly when message lengths are short. This is consistent with earlier more simplistic analyses which led to the proposal for the express-cube, an enhancement of the basic k-ary n-cube structure, which provides additional express channels, allowing messages to bypass groups of nodes along their paths. The final part of the thesis investigates whether this "partial bypassing" can compete with the "total bypassing" capability provided inherently by the DCSH topology

    Efficient structural outlooks for vertex product networks

    Get PDF
    In this thesis, a new classification for a large set of interconnection networks, referred to as "Vertex Product Networks" (VPN), is provided and a number of related issues are discussed including the design and evaluation of efficient structural outlooks for algorithm development on this class of networks. The importance of studying the VPN can be attributed to the following two main reasons: first an unlimited number of new networks can be defined under the umbrella of the VPN, and second some known networks can be studied and analysed more deeply. Examples of the VPN include the newly proposed arrangement-star and the existing Optical Transpose Interconnection Systems (OTIS-networks). Over the past two decades many interconnection networks have been proposed in the literature, including the star, hyperstar, hypercube, arrangement, and OTIS-networks. Most existing research on these networks has focused on analysing their topological properties. Consequently, there has been relatively little work devoted to designing efficient parallel algorithms for important parallel applications. In an attempt to fill this gap, this research aims to propose efficient structural outlooks for algorithm development. These structural outlooks are based on grid and pipeline views as popular structures that support a vast body of applications that are encountered in many areas of science and engineering, including matrix computation, divide-and- conquer type of algorithms, sorting, and Fourier transforms. The proposed structural outlooks are applied to the VPN, notably the arrangement-star and OTIS-networks. In this research, we argue that the proposed arrangement-star is a viable candidate as an underlying topology for future high-speed parallel computers. Not only does the arrangement-star bring a solution to the scalability limitations from which the Abstract existing star graph suffers, but it also enables the development of parallel algorithms based on the proposed structural outlooks, such as matrix computation, linear algebra, divide-and-conquer algorithms, sorting, and Fourier transforms. Results from a performance study conducted in this thesis reveal that the proposed arrangement-star supports efficiently applications based on the grid or pipeline structural outlooks. OTIS-networks are another example of the VPN. This type of networks has the important advantage of combining both optical and electronic interconnect technology. A number of studies have recently explored the topological properties of OTIS-networks. Although there has been some work on designing parallel algorithms for image processing and sorting, hardly any work has considered the suitability of these networks for an important class of scientific problems such as matrix computation, sorting, and Fourier transforms. In this study, we present and evaluate two structural outlooks for algorithm development on OTIS-networks. The proposed structural outlooks are general in the sense that no specific factor network or problem domain is assumed. Timing models for measuring the performance of the proposed structural outlooks are provided. Through these models, the performance of various algorithms on OTIS-networks are evaluated and compared with their counterparts on conventional electronic interconnection systems. The obtained results reveal that OTIS-networks are an attractive candidate for future parallel computers due to their superior performance characteristics over networks using traditional electronic interconnects
    corecore