2,375 research outputs found

    Classical and quantum algorithms for scaling problems

    Get PDF
    This thesis is concerned with scaling problems, which have a plethora of connections to different areas of mathematics, physics and computer science. Although many structural aspects of these problems are understood by now, we only know how to solve them efficiently in special cases.We give new algorithms for non-commutative scaling problems with complexity guarantees that match the prior state of the art. To this end, we extend the well-known (self-concordance based) interior-point method (IPM) framework to Riemannian manifolds, motivated by its success in the commutative setting. Moreover, the IPM framework does not obviously suffer from the same obstructions to efficiency as previous methods. It also yields the first high-precision algorithms for other natural geometric problems in non-positive curvature.For the (commutative) problems of matrix scaling and balancing, we show that quantum algorithms can outperform the (already very efficient) state-of-the-art classical algorithms. Their time complexity can be sublinear in the input size; in certain parameter regimes they are also optimal, whereas in others we show no quantum speedup over the classical methods is possible. Along the way, we provide improvements over the long-standing state of the art for searching for all marked elements in a list, and computing the sum of a list of numbers.We identify a new application in the context of tensor networks for quantum many-body physics. We define a computable canonical form for uniform projected entangled pair states (as the solution to a scaling problem), circumventing previously known undecidability results. We also show, by characterizing the invariant polynomials, that the canonical form is determined by evaluating the tensor network contractions on networks of bounded size

    Spatial adaptive settlement systems in archaeology. Modelling long-term settlement formation from spatial micro interactions

    Get PDF
    Despite research history spanning more than a century, settlement patterns still hold a promise to contribute to the theories of large-scale processes in human history. Mostly they have been presented as passive imprints of past human activities and spatial interactions they shape have not been studied as the driving force of historical processes. While archaeological knowledge has been used to construct geographical theories of evolution of settlement there still exist gaps in this knowledge. Currently no theoretical framework has been adopted to explore them as spatial systems emerging from micro-choices of small population units. The goal of this thesis is to propose a conceptual model of adaptive settlement systems based on complex adaptive systems framework. The model frames settlement system formation processes as an adaptive system containing spatial features, information flows, decision making population units (agents) and forming cross scale feedback loops between location choices of individuals and space modified by their aggregated choices. The goal of the model is to find new ways of interpretation of archaeological locational data as well as closer theoretical integration of micro-level choices and meso-level settlement structures. The thesis is divided into five chapters, the first chapter is dedicated to conceptualisation of the general model based on existing literature and shows that settlement systems are inherently complex adaptive systems and therefore require tools of complexity science for causal explanations. The following chapters explore both empirical and theoretical simulated settlement patterns based dedicated to studying selected information flows and feedbacks in the context of the whole system. Second and third chapters explore the case study of the Stone Age settlement in Estonia comparing residential location choice principles of different periods. In chapter 2 the relation between environmental conditions and residential choice is explored statistically. The results confirm that the relation is significant but varies between different archaeological phenomena. In the third chapter hunter-fisher-gatherer and early agrarian Corded Ware settlement systems were compared spatially using inductive models. The results indicated a large difference in their perception of landscape regarding suitability for habitation. It led to conclusions that early agrarian land use significantly extended land use potential and provided a competitive spatial benefit. In addition to spatial differences, model performance was compared and the difference was discussed in the context of proposed adaptive settlement system model. Last two chapters present theoretical agent-based simulation experiments intended to study effects discussed in relation to environmental model performance and environmental determinism in general. In the fourth chapter the central place foragingmodel was embedded in the proposed model and resource depletion, as an environmental modification mechanism, was explored. The study excluded the possibility that mobility itself would lead to modelling effects discussed in the previous chapter. The purpose of the last chapter is the disentanglement of the complex relations between social versus human-environment interactions. The study exposed non-linear spatial effects expected population density can have on the system and the general robustness of environmental inductive models in archaeology to randomness and social effect. The model indicates that social interactions between individuals lead to formation of a group agency which is determined by the environment even if individual cognitions consider the environment insignificant. It also indicates that spatial configuration of the environment has a certain influence towards population clustering therefore providing a potential pathway to population aggregation. Those empirical and theoretical results showed the new insights provided by the complex adaptive systems framework. Some of the results, including the explanation of empirical results, required the conceptual model to provide a framework of interpretation

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Evaluation Methodologies in Software Protection Research

    Full text link
    Man-at-the-end (MATE) attackers have full control over the system on which the attacked software runs, and try to break the confidentiality or integrity of assets embedded in the software. Both companies and malware authors want to prevent such attacks. This has driven an arms race between attackers and defenders, resulting in a plethora of different protection and analysis methods. However, it remains difficult to measure the strength of protections because MATE attackers can reach their goals in many different ways and a universally accepted evaluation methodology does not exist. This survey systematically reviews the evaluation methodologies of papers on obfuscation, a major class of protections against MATE attacks. For 572 papers, we collected 113 aspects of their evaluation methodologies, ranging from sample set types and sizes, over sample treatment, to performed measurements. We provide detailed insights into how the academic state of the art evaluates both the protections and analyses thereon. In summary, there is a clear need for better evaluation methodologies. We identify nine challenges for software protection evaluations, which represent threats to the validity, reproducibility, and interpretation of research results in the context of MATE attacks

    Historical Burdens on Physics

    Get PDF
    When learning physics, one follows a track very similar to the historical path of the evolution of this science: one takes detours, overcomes superfluous obstacles and repeats mistakes, one learns inappropriate concepts and uses outdated methods. In the book, more than 200 articles present and analyze such obsolete concepts methods. All articles have the same structure: 1. subject, 2. deficiencies, 3. origin, 4. disposal. The articles had originally appeared as columns in various magazines. Accordingly, we had tried to write them in an easily understandable way

    Computer Vision and Architectural History at Eye Level:Mixed Methods for Linking Research in the Humanities and in Information Technology

    Get PDF
    Information on the history of architecture is embedded in our daily surroundings, in vernacular and heritage buildings and in physical objects, photographs and plans. Historians study these tangible and intangible artefacts and the communities that built and used them. Thus valuableinsights are gained into the past and the present as they also provide a foundation for designing the future. Given that our understanding of the past is limited by the inadequate availability of data, the article demonstrates that advanced computer tools can help gain more and well-linked data from the past. Computer vision can make a decisive contribution to the identification of image content in historical photographs. This application is particularly interesting for architectural history, where visual sources play an essential role in understanding the built environment of the past, yet lack of reliable metadata often hinders the use of materials. The automated recognition contributes to making a variety of image sources usable forresearch.<br/

    Production and characterisation of dipolar Bose–Einstein condensates

    Get PDF
    Remarkable progress in the field of ultracold atoms has enabled the study of a great variety of topics in many-body quantum mechanics. The precise control of key parameters, such as interactions, temperature, density, internal and external degrees of freedom, dimensionality and the trapping geometry makes them a powerful and flexible experimental platform. The ability to create degenerate samples of atoms which feature long-range and anisotropic dipole–dipole interactions besides the more conventional short-range and isotropic contact interactions drew considerable attention, enabling the creation of quantum droplets and a supersolid phase. This thesis reports on experimental and theoretical progress in investigating dipolar many-body quantum systems. We present an overview of our experimental apparatus and the techniques used for obtaining a Bose–Einstein condensate (BEC) of erbium. We then discuss our experimental sequence for producing a quantum degenerate gas, creating a quasi-pure BEC with 2.2 x 10^5 atoms. To optimise the production of erbium BECs, we explore density- and temperature-dependent losses in 166Er and identify six previously unreported resonant loss features. Finally, to enable studies of density-dependent phenomena, we present a theoretical investigation of dipolar condensates in box-like traps, where we explore stability and how one can use it to replicate properties of an infinite, homogeneous system to study dipolar physics. We found that traps with hard walls trigger roton-like density oscillations even if the bulk of the system is far from the roton regime, so smoother potentials are better suited to recreate homogeneous conditions. This sets the ground for future experiments, where the atoms will be loaded into a box trap to enable studies of systems which are tightly trapped in one direction but homogeneous in the other two

    (b2023 to 2014) The UNBELIEVABLE similarities between the ideas of some people (2006-2016) and my ideas (2002-2008) in physics (quantum mechanics, cosmology), cognitive neuroscience, philosophy of mind, and philosophy (this manuscript would require a REVOLUTION in international academy environment!)

    Get PDF
    (b2023 to 2014) The UNBELIEVABLE similarities between the ideas of some people (2006-2016) and my ideas (2002-2008) in physics (quantum mechanics, cosmology), cognitive neuroscience, philosophy of mind, and philosophy (this manuscript would require a REVOLUTION in international academy environment!
    • …
    corecore