39 research outputs found

    The combinatorics of biased riffle shuffles

    Full text link
    This paper studies biased riffle shuffles, first defined by Diaconis, Fill, and Pitman. These shuffles generalize the well-studied Gilbert-Shannon-Reeds shuffle and convolve nicely. An upper bound is given for the time for these shuffles to converge to the uniform distribution; this matches lower bounds of Lalley. A careful version of a bijection of Gessel leads to a generating function for cycle structure after one of these shuffles and gives new results about descents in random permutations. Results are also obtained about the inversion and descent structure of a permutation after one of these shuffles.Comment: 11 page

    Riffle shuffles with biased cuts

    Get PDF
    The well-known Gilbert-Shannon-Reeds model for riffle shuffles assumes that the cards are initially cut 'about in half' and then riffled together. We analyze a natural variant where the initial cut is biased. Extending results of Fulman (1998), we show a sharp cutoff in separation and L-infinity distances. This analysis is possible due to the close connection between shuffling and quasisymmetric functions along with some complex analysis of a generating function.Comment: 10 page

    Affine shuffles, shuffles with cuts, the Whitehouse module, and patience sorting

    Get PDF
    Type A affine shuffles are compared with riffle shuffles followed by a cut. Although these probability measures on the symmetric group S_n are different, they both satisfy a convolution property. Strong evidence is given that when the underlying parameter qq satisfies gcd(n,q−1)=1gcd(n,q-1)=1, the induced measures on conjugacy classes of the symmetric group coincide. This gives rise to interesting combinatorics concerning the modular equidistribution by major index of permutations in a given conjugacy class and with a given number of cyclic descents. It is proved that the use of cuts does not speed up the convergence rate of riffle shuffles to randomness. Generating functions for the first pile size in patience sorting from decks with repeated values are derived. This relates to random matrices.Comment: Galley version for J. Alg.; minor revisions in Sec.

    Card-Shuffling via Convolutions of Projections on Combinatorial Hopf Algebras

    Get PDF
    Recently, Diaconis, Ram and I created Markov chains out of the coproduct-then-product operator on combinatorial Hopf algebras. These chains model the breaking and recombining of combinatorial objects. Our motivating example was the riffle-shuffling of a deck of cards, for which this Hopf algebra connection allowed explicit computation of all the eigenfunctions. The present note replaces in this construction the coproduct-then-product map with convolutions of projections to the graded subspaces, effectively allowing us to dictate the distribution of sizes of the pieces in the breaking step of the previous chains. An important example is removing one "vertex" and reattaching it, in analogy with top-to-random shuffling. This larger family of Markov chains all admit analysis by Hopf-algebraic techniques. There are simple combinatorial expressions for their stationary distributions and for their eigenvalues and multiplicities and, in some cases, the eigenfunctions are also calculable.Comment: 12 pages. This is an extended abstract, to appear in Proceedings of the 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC). Comments are very welcom
    corecore