13,801 research outputs found

    Combinatorial complexity in o-minimal geometry

    Full text link
    In this paper we prove tight bounds on the combinatorial and topological complexity of sets defined in terms of nn definable sets belonging to some fixed definable family of sets in an o-minimal structure. This generalizes the combinatorial parts of similar bounds known in the case of semi-algebraic and semi-Pfaffian sets, and as a result vastly increases the applicability of results on combinatorial and topological complexity of arrangements studied in discrete and computational geometry. As a sample application, we extend a Ramsey-type theorem due to Alon et al., originally proved for semi-algebraic sets of fixed description complexity to this more general setting.Comment: 25 pages. Revised version. To appear in the Proc. London Math. So

    Three-dimensional maps and subgroup growth

    Full text link
    In this paper we derive a generating series for the number of cellular complexes known as pavings or three-dimensional maps, on nn darts, thus solving an analogue of Tutte's problem in dimension three. The generating series we derive also counts free subgroups of index nn in Δ+=Z2∗Z2∗Z2\Delta^+ = \mathbb{Z}_2*\mathbb{Z}_2*\mathbb{Z}_2 via a simple bijection between pavings and finite index subgroups which can be deduced from the action of Δ+\Delta^+ on the cosets of a given subgroup. We then show that this generating series is non-holonomic. Furthermore, we provide and study the generating series for isomorphism classes of pavings, which correspond to conjugacy classes of free subgroups of finite index in Δ+\Delta^+. Computational experiments performed with software designed by the authors provide some statistics about the topology and combinatorics of pavings on n≤16n\leq 16 darts.Comment: 17 pages, 6 figures, 1 table; computational experiments added; a new set of author

    Optimal topological simplification of discrete functions on surfaces

    Get PDF
    We solve the problem of minimizing the number of critical points among all functions on a surface within a prescribed distance {\delta} from a given input function. The result is achieved by establishing a connection between discrete Morse theory and persistent homology. Our method completely removes homological noise with persistence less than 2{\delta}, constructively proving the tightness of a lower bound on the number of critical points given by the stability theorem of persistent homology in dimension two for any input function. We also show that an optimal solution can be computed in linear time after persistence pairs have been computed.Comment: 27 pages, 8 figure

    Simplicial Multivalued Maps and the Witness Complex for Dynamical Analysis of Time Series

    Full text link
    Topology based analysis of time-series data from dynamical systems is powerful: it potentially allows for computer-based proofs of the existence of various classes of regular and chaotic invariant sets for high-dimensional dynamics. Standard methods are based on a cubical discretization of the dynamics and use the time series to construct an outer approximation of the underlying dynamical system. The resulting multivalued map can be used to compute the Conley index of isolated invariant sets of cubes. In this paper we introduce a discretization that uses instead a simplicial complex constructed from a witness-landmark relationship. The goal is to obtain a natural discretization that is more tightly connected with the invariant density of the time series itself. The time-ordering of the data also directly leads to a map on this simplicial complex that we call the witness map. We obtain conditions under which this witness map gives an outer approximation of the dynamics, and thus can be used to compute the Conley index of isolated invariant sets. The method is illustrated by a simple example using data from the classical H\'enon map.Comment: laTeX, 9 figures, 32 page
    • …
    corecore