7,612 research outputs found

    Algorithms and Lower Bounds in Circuit Complexity

    Get PDF
    Computational complexity theory aims to understand what problems can be efficiently solved by computation. This thesis studies computational complexity in the model of Boolean circuits. Boolean circuits provide a basic mathematical model for computation and play a central role in complexity theory, with important applications in separations of complexity classes, algorithm design, and pseudorandom constructions. In this thesis, we investigate various types of circuit models such as threshold circuits, Boolean formulas, and their extensions, focusing on obtaining complexity-theoretic lower bounds and algorithmic upper bounds for these circuits. (1) Algorithms and lower bounds for generalized threshold circuits: We extend the study of linear threshold circuits, circuits with gates computing linear threshold functions, to the more powerful model of polynomial threshold circuits where the gates can compute polynomial threshold functions. We obtain hardness and meta-algorithmic results for this circuit model, including strong average-case lower bounds, satisfiability algorithms, and derandomization algorithms for constant-depth polynomial threshold circuits with super-linear wire complexity. (2) Algorithms and lower bounds for enhanced formulas: We investigate the model of Boolean formulas whose leaf gates can compute complex functions. In particular, we study De Morgan formulas whose leaf gates are functions with "low communication complexity". Such gates can capture a broad class of functions including symmetric functions and polynomial threshold functions. We obtain new and improved results in terms of lower bounds and meta-algorithms (satisfiability, derandomization, and learning) for such enhanced formulas. (3) Circuit lower bounds for MCSP: We study circuit lower bounds for the Minimum Circuit Size Problem (MCSP), the fundamental problem of deciding whether a given function (in the form of a truth table) can be computed by small circuits. We get new and improved lower bounds for MCSP that nearly match the best-known lower bounds against several well-studied circuit models such as Boolean formulas and constant-depth circuits

    Some results on circuit depth

    Get PDF
    An important problem in theoretical computer science is to develop methods for estimating the complexity of finite functions. For many familiar functions there remain important gaps between the best known lower and upper bound we investigate the inherent complexity of Boolean functional taking circuits as our model of computation and depth (or delay)to be the measure of complexity. The relevance of circuits as a model of computation for Boolean functions stems from the fact that Turing machine computations may be efficiently simulated by circuits. Important relations among various measures of circuit complexity are btained as well as bounds on the maximum depth of any function and of any monotone function. We then give a detailed account of the complexity of NAND circuits for several important functions and pursue an analysis of the important set of symmetric functions. A number of gap theorems for symmetric functions are exhibited and these are contrasted with uniform hierarchies for several large sets of functions. Finally, we describe several short formulae for threshold functions

    Definability by constant-depth polynomial-size circuits

    Get PDF
    A function of boolean arguments is symmetric if its value depends solely on the number of 1's among its arguments. In the first part of this paper we partially characterize those symmetric functions that can be computed by constant-depth polynomial-size sequences of boolean circuits, and discuss the complete characterization. (We treat both uniform and non-uniform sequences of circuits.) Our results imply that these circuits can compute functions that are not definable in first-order logic. In the second part of the paper we generalize from circuits computing symmetric functions to circuits recognizing first-order structures. By imposing fairly natural restrictions we develop a circuit model with precisely the power of first-order logic: a class of structures is first-order definable if and only if it can be recognized by a constant-depth polynomial-time sequence of such circuits.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26084/1/0000160.pd

    Programmable neural logic

    Get PDF
    Circuits of threshold elements (Boolean input, Boolean output neurons) have been shown to be surprisingly powerful. Useful functions such as XOR, ADD and MULTIPLY can be implemented by such circuits more efficiently than by traditional AND/OR circuits. In view of that, we have designed and built a programmable threshold element. The weights are stored on polysilicon floating gates, providing long-term retention without refresh. The weight value is increased using tunneling and decreased via hot electron injection. A weight is stored on a single transistor allowing the development of dense arrays of threshold elements. A 16-input programmable neuron was fabricated in the standard 2 Ī¼m double-poly, analog process available from MOSIS. We also designed and fabricated the multiple threshold element introduced in [5]. It presents the advantage of reducing the area of the layout from O(n^2) to O(n); (n being the number of variables) for a broad class of Boolean functions, in particular symmetric Boolean functions such as PARITY. A long term goal of this research is to incorporate programmable single/multiple threshold elements, as building blocks in field programmable gate arrays

    Neural computation of arithmetic functions

    Get PDF
    A neuron is modeled as a linear threshold gate, and the network architecture considered is the layered feedforward network. It is shown how common arithmetic functions such as multiplication and sorting can be efficiently computed in a shallow neural network. Some known results are improved by showing that the product of two n-bit numbers and sorting of n n-bit numbers can be computed by a polynomial-size neural network using only four and five unit delays, respectively. Moreover, the weights of each threshold element in the neural networks require O(log n)-bit (instead of n -bit) accuracy. These results can be extended to more complicated functions such as multiple products, division, rational functions, and approximation of analytic functions
    • ā€¦
    corecore