7 research outputs found

    Fuzzy measures and integrals in MCDA

    Get PDF
    This chapter aims at a unified presentation of various methods of MCDA based onfuzzy measures (capacity) and fuzzy integrals, essentially the Choquet andSugeno integral. A first section sets the position of the problem ofmulticriteria decision making, and describes the various possible scales ofmeasurement (difference, ratio, and ordinal). Then a whole section is devotedto each case in detail: after introducing necessary concepts, the methodologyis described, and the problem of the practical identification of fuzzy measuresis given. The important concept of interaction between criteria, central inthis chapter, is explained in details. It is shown how it leads to k-additivefuzzy measures. The case of bipolar scales leads to thegeneral model based on bi-capacities, encompassing usual models based oncapacities. A general definition of interaction for bipolar scales isintroduced. The case of ordinal scales leads to the use of Sugeno integral, andits symmetrized version when one considers symmetric ordinal scales. Apractical methodology for the identification of fuzzy measures in this contextis given. Lastly, we give a short description of some practical applications.Choquet integral; fuzzy measure; interaction; bi-capacities

    The Choquet integral for 2-additive bi-capacities

    No full text
    International audienceBi-capacities have been presented recently by the authors as a natural generalization of capacities (fuzzy measures). Usual con cepts as M öbius transform, Shapley value and interaction index, Choquet integral, k-additivity can be generalized. We present formulas of the Choquet integral w.r.t. the Möbius transform, and w.r.t. the interaction index for 2-additive bi-capacities

    Bi-capacities -- Part II: the Choquet integral

    No full text
    International audienceBi-capacities arise as a natural generalization of capacities (or fuzzy measures) in a context of decision making where underlying scales are bipolar. They are able to capture a wide variety of decision behaviours, encompassing models such as Cumulative Prospect Theory (CPT). The aim of this paper in two parts is to present the machinery behind bi-capacities, and thus remains on a rather theoretical level, although some parts are firmly rooted in decision theory, notably cooperative game theory. The present second part focuses on the definition of Choquet integral. We give several expressions of it, including an expression w.r.t. the Möbius transform. This permits to express the Choquet integral for 2-additive bi-capacities w.r.t. the interaction index
    corecore