18,487 research outputs found

    On fractional realizations of graph degree sequences

    Full text link
    We introduce fractional realizations of a graph degree sequence and a closely associated convex polytope. Simple graph realizations correspond to a subset of the vertices of this polytope. We describe properties of the polytope vertices and characterize degree sequences for which each polytope vertex corresponds to a simple graph realization. These include the degree sequences of pseudo-split graphs, and we characterize their realizations both in terms of forbidden subgraphs and graph structure.Comment: 18 pages, 4 figure

    Upward-closed hereditary families in the dominance order

    Get PDF
    The majorization relation orders the degree sequences of simple graphs into posets called dominance orders. As shown by Hammer et al. and Merris, the degree sequences of threshold and split graphs form upward-closed sets within the dominance orders they belong to, i.e., any degree sequence majorizing a split or threshold sequence must itself be split or threshold, respectively. Motivated by the fact that threshold graphs and split graphs have characterizations in terms of forbidden induced subgraphs, we define a class F\mathcal{F} of graphs to be dominance monotone if whenever no realization of ee contains an element F\mathcal{F} as an induced subgraph, and dd majorizes ee, then no realization of dd induces an element of F\mathcal{F}. We present conditions necessary for a set of graphs to be dominance monotone, and we identify the dominance monotone sets of order at most 3.Comment: 15 pages, 6 figure
    corecore