424 research outputs found

    Neighbourhood-aware counter-based broadcast scheme for wireless ad hoc networks

    Get PDF
    Broadcasting is a vital operation in mobile ad hoc networks (MANETs) and it is crucial to enhance its efficiency to ensure successful deployment. Although flooding is ideal for broadcast operations due to its simplicity and high reachability it suffers from high packet collision which can degrade network performance severely. Counter-based broadcast schemes have been introduced to alleviate the limitations of flooding. This study introduces an enhancement to counter-based broadcast by adjusting the threshold value and the Random Assessment Delay (RAD) using minimal neighbourhood information

    Requirement analysis for building practical accident warning systems based on vehicular ad-hoc networks

    Get PDF
    An Accident Warning System (AWS) is a safety application that provides collision avoidance notifications for next generation vehicles whilst Vehicular Ad-hoc Networks (VANETs) provide the communication functionality to exchange these notifi- cations. Despite much previous research, there is little agreement on the requirements for accident warning systems. In order to build a practical warning system, it is important to ascertain the system requirements, information to be exchanged, and protocols needed for communication between vehicles. This paper presents a practical model of an accident warning system by stipulating the requirements in a realistic manner and thoroughly reviewing previous proposals with a view to identify gaps in this area

    microSlotted 1-Persistence Flooding in VANETs

    Get PDF
    Many Driver Support Systems in future vehicles will rely on wireless communication. This wireless communication can be divided into two categories: Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I). V2V is often used for vehicles to exchange information of a local nature, e.g. co-operative following or collision avoidance. V2I can be used as ’smart road signs’, access to back-end networks (e.g. Internet) or as simple repeaters. The term VANET is key to V2V and V2I communication: Vehicular Ad hoc Network. A Driver Support System described in [1] presents an interesting problem: a vehicle should be aware of the state of traffic on a road, up to several kilometers ahead. A system called the TraffiFilter has been proposed in [2] to provide this information

    Performance evaluation of adjusted probabilistic broadcasting in MANETs

    Get PDF
    Appropriate use of a probabilistic broadcasting method in MANETs can decrease the number of rebroadcasts, and as a result reduce the opportunity of contention and collision among neighbouring nodes. In this paper we evaluate the performance of adjusted probabilistic flooding by comparing it to "simple" flooding as used with the ad hoc on demand distance vector (AODV) routing protocol as well as a fixed probabilistic approach. The results reveal that the adjusted probabilistic flooding exhibits superior performance in terms of both reachability and saved rebroadcast

    Performance evaluation of flooding in MANETs in the presence of multi-broadcast traffic

    Get PDF
    Broadcasting has many important uses and several mobile ad hoc networks (MANETs) protocols assume the availability of an underlying broadcast service. Applications, which make use of broadcasting, include LAN emulation, paging a particular node. However, broadcasting induces what is known as the "broadcast storm problem" which causes severe degradation in network performance, due to excessive redundant retransmission, collision, and contention. Although probabilistic flooding has been one of the earliest suggested approaches to broadcasting. There has not been so far any attempt to analyse its performance behaviour in MANETs. This paper investigates using extensive ns-2 simulations the effects of a number of important parameters in a MANET, including node speed, pause time and, traffic load, on the performance of probabilistic flooding. The results reveal that while these parameters have a critical impact on the reachability achieved by probabilistic flooding, they have relatively a lower effect on the number of saved rebroadcast packets

    An efficient counter-based broadcast scheme for mobile ad hoc networks

    Get PDF
    In mobile ad hoc networks (MANETs), broadcasting plays a fundamental role, diffusing a message from a given source node to all the other nodes in the network. Flooding is the simplest and commonly used mechanism for broadcasting in MANETs, where each node retransmits every uniquely received message exactly once. Despite its simplicity, it however generates redundant rebroadcast messages which results in high contention and collision in the network, a phenomenon referred to as broadcast storm problem. Pure probabilistic approaches have been proposed to mitigate this problem inherent with flooding, where mobile nodes rebroadcast a message with a probability p which can be fixed or computed based on the local density. However, these approaches reduce the number of rebroadcasts at the expense of reachability. On the other hand, counter-based approaches inhibit a node from broadcasting a packet based on the number of copies of the broadcast packet received by the node within a random access delay time. These schemes achieve better throughput and reachability, but suffer from relatively longer delay. In this paper, we propose an efficient broadcasting scheme that combines the advantages of pure probabilistic and counter-based schemes to yield a significant performance improvement. Simulation results reveal that the new scheme achieves superior performance in terms of saved-rebroadcast, reachability and latency
    corecore