30,759 research outputs found

    On the Complexity of Optimization Problems based on Compiled NNF Representations

    Full text link
    Optimization is a key task in a number of applications. When the set of feasible solutions under consideration is of combinatorial nature and described in an implicit way as a set of constraints, optimization is typically NP-hard. Fortunately, in many problems, the set of feasible solutions does not often change and is independent from the user's request. In such cases, compiling the set of constraints describing the set of feasible solutions during an off-line phase makes sense, if this compilation step renders computationally easier the generation of a non-dominated, yet feasible solution matching the user's requirements and preferences (which are only known at the on-line step). In this article, we focus on propositional constraints. The subsets L of the NNF language analyzed in Darwiche and Marquis' knowledge compilation map are considered. A number of families F of representations of objective functions over propositional variables, including linear pseudo-Boolean functions and more sophisticated ones, are considered. For each language L and each family F, the complexity of generating an optimal solution when the constraints are compiled into L and optimality is to be considered w.r.t. a function from F is identified

    Synthesis of a simple self-stabilizing system

    Full text link
    With the increasing importance of distributed systems as a computing paradigm, a systematic approach to their design is needed. Although the area of formal verification has made enormous advances towards this goal, the resulting functionalities are limited to detecting problems in a particular design. By means of a classical example, we illustrate a simple template-based approach to computer-aided design of distributed systems based on leveraging the well-known technique of bounded model checking to the synthesis setting.Comment: In Proceedings SYNT 2014, arXiv:1407.493

    Carnap: an Open Framework for Formal Reasoning in the Browser

    Get PDF
    This paper presents an overview of Carnap, a free and open framework for the development of formal reasoning applications. Carnap’s design emphasizes flexibility, extensibility, and rapid prototyping. Carnap-based applications are written in Haskell, but can be compiled to JavaScript to run in standard web browsers. This combination of features makes Carnap ideally suited for educational applications, where ease-of-use is crucial for students and adaptability to different teaching strategies and classroom needs is crucial for instructors. The paper describes Carnap’s implementation, along with its current and projected pedagogical applications
    corecore