7,634 research outputs found

    The Blackwell relation defines no lattice

    Full text link
    Blackwell's theorem shows the equivalence of two preorders on the set of information channels. Here, we restate, and slightly generalize, his result in terms of random variables. Furthermore, we prove that the corresponding partial order is not a lattice; that is, least upper bounds and greatest lower bounds do not exist.Comment: 5 pages, 1 figur

    Sharp and fuzzy observables on effect algebras

    Full text link
    Observables on effect algebras and their fuzzy versions obtained by means of confidence measures (Markov kernels) are studied. It is shown that, on effect algebras with the (E)-property, given an observable and a confidence measure, there exists a fuzzy version of the observable. Ordering of observables according to their fuzzy properties is introduced, and some minimality conditions with respect to this ordering are found. Applications of some results of classical theory of experiments are considered.Comment: 23 page

    Canonical extensions and ultraproducts of polarities

    Full text link
    J{\'o}nsson and Tarski's notion of the perfect extension of a Boolean algebra with operators has evolved into an extensive theory of canonical extensions of lattice-based algebras. After reviewing this evolution we make two contributions. First it is shown that the failure of a variety of algebras to be closed under canonical extensions is witnessed by a particular one of its free algebras. The size of the set of generators of this algebra can be made a function of a collection of varieties and is a kind of Hanf number for canonical closure. Secondly we study the complete lattice of stable subsets of a polarity structure, and show that if a class of polarities is closed under ultraproducts, then its stable set lattices generate a variety that is closed under canonical extensions. This generalises an earlier result of the author about generation of canonically closed varieties of Boolean algebras with operators, which was in turn an abstraction of the result that a first-order definable class of Kripke frames determines a modal logic that is valid in its so-called canonical frames

    A universal approach for drainage basins

    Full text link
    Drainage basins are essential to Geohydrology and Biodiversity. Defining those regions in a simple, robust and efficient way is a constant challenge in Earth Science. Here, we introduce a model to delineate multiple drainage basins through an extension of the Invasion Percolation-Based Algorithm (IPBA). In order to prove the potential of our approach, we apply it to real and artificial datasets. We observe that the perimeter and area distributions of basins and anti-basins display long tails extending over several orders of magnitude and following approximately power-law behaviors. Moreover, the exponents of these power laws depend on spatial correlations and are invariant under the landscape orientation, not only for terrestrial, but lunar and martian landscapes. The terrestrial and martian results are statistically identical, which suggests that a hypothetical martian river would present similarity to the terrestrial rivers. Finally, we propose a theoretical value for the Hack's exponent based on the fractal dimension of watersheds, γ=D/2\gamma=D/2. We measure γ=0.54±0.01\gamma=0.54 \pm 0.01 for Earth, which is close to our estimation of γ0.55\gamma \approx 0.55. Our study suggests that Hack's law can have its origin purely in the maximum and minimum lines of the landscapes.Comment: 20 pages, 6 Figures, and 1 Tabl

    N-fold way simulated tempering for pairwise interaction point processes

    Get PDF
    Pairwise interaction point processes with strong interaction are usually difficult to sample. We discuss how Besag lattice processes can be used in a simulated tempering MCMC scheme to help with the simulation of such processes. We show how the N-fold way algorithm can be used to sample the lattice processes efficiently and introduce the N-fold way algorithm into our simulated tempering scheme. To calibrate the simulated tempering scheme we use the Wang-Landau algorithm

    Unique Information and Secret Key Decompositions

    Full text link
    The unique information (UIUI) is an information measure that quantifies a deviation from the Blackwell order. We have recently shown that this quantity is an upper bound on the one-way secret key rate. In this paper, we prove a triangle inequality for the UIUI, which implies that the UIUI is never greater than one of the best known upper bounds on the two-way secret key rate. We conjecture that the UIUI lower bounds the two-way rate and discuss implications of the conjecture.Comment: 7 page
    corecore