112 research outputs found

    The Bipartite Swapping Trick on Graph Homomorphisms

    Full text link
    We provide an upper bound to the number of graph homomorphisms from GG to HH, where HH is a fixed graph with certain properties, and GG varies over all NN-vertex, dd-regular graphs. This result generalizes a recently resolved conjecture of Alon and Kahn on the number of independent sets. We build on the work of Galvin and Tetali, who studied the number of graph homomorphisms from GG to HH when HH is bipartite. We also apply our techniques to graph colorings and stable set polytopes.Comment: 22 pages. To appear in SIAM J. Discrete Mat

    Extremes of the internal energy of the Potts model on cubic graphs

    Get PDF
    We prove tight upper and lower bounds on the internal energy per particle (expected number of monochromatic edges per vertex) in the anti-ferromagnetic Potts model on cubic graphs at every temperature and for all q2q \ge 2. This immediately implies corresponding tight bounds on the anti-ferromagnetic Potts partition function. Taking the zero-temperature limit gives new results in extremal combinatorics: the number of qq-colorings of a 33-regular graph, for any q2q \ge 2, is maximized by a union of K3,3K_{3,3}'s. This proves the d=3d=3 case of a conjecture of Galvin and Tetali

    A reverse Sidorenko inequality

    Full text link
    Let HH be a graph allowing loops as well as vertex and edge weights. We prove that, for every triangle-free graph GG without isolated vertices, the weighted number of graph homomorphisms hom(G,H)\hom(G, H) satisfies the inequality hom(G,H)uvE(G)hom(Kdu,dv,H)1/(dudv), \hom(G, H ) \le \prod_{uv \in E(G)} \hom(K_{d_u,d_v}, H )^{1/(d_ud_v)}, where dud_u denotes the degree of vertex uu in GG. In particular, one has hom(G,H)1/E(G)hom(Kd,d,H)1/d2 \hom(G, H )^{1/|E(G)|} \le \hom(K_{d,d}, H )^{1/d^2} for every dd-regular triangle-free GG. The triangle-free hypothesis on GG is best possible. More generally, we prove a graphical Brascamp-Lieb type inequality, where every edge of GG is assigned some two-variable function. These inequalities imply tight upper bounds on the partition function of various statistical models such as the Ising and Potts models, which includes independent sets and graph colorings. For graph colorings, corresponding to H=KqH = K_q, we show that the triangle-free hypothesis on GG may be dropped; this is also valid if some of the vertices of KqK_q are looped. A corollary is that among dd-regular graphs, G=Kd,dG = K_{d,d} maximizes the quantity cq(G)1/V(G)c_q(G)^{1/|V(G)|} for every qq and dd, where cq(G)c_q(G) counts proper qq-colorings of GG. Finally, we show that if the edge-weight matrix of HH is positive semidefinite, then hom(G,H)vV(G)hom(Kdv+1,H)1/(dv+1). \hom(G, H) \le \prod_{v \in V(G)} \hom(K_{d_v+1}, H )^{1/(d_v+1)}. This implies that among dd-regular graphs, G=Kd+1G = K_{d+1} maximizes hom(G,H)1/V(G)\hom(G, H)^{1/|V(G)|}. For 2-spin Ising models, our results give a complete characterization of extremal graphs: complete bipartite graphs maximize the partition function of 2-spin antiferromagnetic models and cliques maximize the partition function of ferromagnetic models. These results settle a number of conjectures by Galvin-Tetali, Galvin, and Cohen-Csikv\'ari-Perkins-Tetali, and provide an alternate proof to a conjecture by Kahn.Comment: 30 page

    Topological lower bounds for the chromatic number: A hierarchy

    Full text link
    This paper is a study of ``topological'' lower bounds for the chromatic number of a graph. Such a lower bound was first introduced by Lov\'asz in 1978, in his famous proof of the \emph{Kneser conjecture} via Algebraic Topology. This conjecture stated that the \emph{Kneser graph} \KG_{m,n}, the graph with all kk-element subsets of {1,2,...,n}\{1,2,...,n\} as vertices and all pairs of disjoint sets as edges, has chromatic number n2k+2n-2k+2. Several other proofs have since been published (by B\'ar\'any, Schrijver, Dolnikov, Sarkaria, Kriz, Greene, and others), all of them based on some version of the Borsuk--Ulam theorem, but otherwise quite different. Each can be extended to yield some lower bound on the chromatic number of an arbitrary graph. (Indeed, we observe that \emph{every} finite graph may be represented as a generalized Kneser graph, to which the above bounds apply.) We show that these bounds are almost linearly ordered by strength, the strongest one being essentially Lov\'asz' original bound in terms of a neighborhood complex. We also present and compare various definitions of a \emph{box complex} of a graph (developing ideas of Alon, Frankl, and Lov\'asz and of \kriz). A suitable box complex is equivalent to Lov\'asz' complex, but the construction is simpler and functorial, mapping graphs with homomorphisms to Z2\Z_2-spaces with Z2\Z_2-maps.Comment: 16 pages, 1 figure. Jahresbericht der DMV, to appea

    Sidorenko's conjecture for blow-ups

    Get PDF
    A celebrated conjecture of Sidorenko and Erdős-Simonovits states that, for all bipartite graphs H, quasirandom graphs contain asymptotically the minimum number of copies of H taken over all graphs with the same order and edge density. This conjecture has attracted considerable interest over the last decade and is now known to hold for a broad range of bipartite graphs, with the overall trend saying that a graph satisfies the conjecture if it can be built from simple building blocks such as trees in a certain recursive fashion. Our contribution here, which goes beyond this paradigm, is to show that the conjecture holds for any bipartite graph H with bipartition A ∪ B where the number of vertices in B of degree k satisfies a certain divisibility condition for each k. As a corollary, we have that for every bipartite graph H with bipartition A ∪ B, there is a positive integer p such that the blow-up H_(A)^(p) formed by taking p vertex-disjoint copies of H and gluing all copies of A along corresponding vertices satisfies the conjecture. Another way of viewing this latter result is that for every bipartite H there is a positive integer p such that an L^(p)-version of Sidorenko's conjecture holds for H
    corecore