3,493 research outputs found

    Particle Gibbs for Bayesian Additive Regression Trees

    Full text link
    Additive regression trees are flexible non-parametric models and popular off-the-shelf tools for real-world non-linear regression. In application domains, such as bioinformatics, where there is also demand for probabilistic predictions with measures of uncertainty, the Bayesian additive regression trees (BART) model, introduced by Chipman et al. (2010), is increasingly popular. As data sets have grown in size, however, the standard Metropolis-Hastings algorithms used to perform inference in BART are proving inadequate. In particular, these Markov chains make local changes to the trees and suffer from slow mixing when the data are high-dimensional or the best fitting trees are more than a few layers deep. We present a novel sampler for BART based on the Particle Gibbs (PG) algorithm (Andrieu et al., 2010) and a top-down particle filtering algorithm for Bayesian decision trees (Lakshminarayanan et al., 2013). Rather than making local changes to individual trees, the PG sampler proposes a complete tree to fit the residual. Experiments show that the PG sampler outperforms existing samplers in many settings

    Bayesian Additive Regression Trees with Model Trees

    Full text link
    Bayesian Additive Regression Trees (BART) is a tree-based machine learning method that has been successfully applied to regression and classification problems. BART assumes regularisation priors on a set of trees that work as weak learners and is very flexible for predicting in the presence of non-linearity and high-order interactions. In this paper, we introduce an extension of BART, called Model Trees BART (MOTR-BART), that considers piecewise linear functions at node levels instead of piecewise constants. In MOTR-BART, rather than having a unique value at node level for the prediction, a linear predictor is estimated considering the covariates that have been used as the split variables in the corresponding tree. In our approach, local linearities are captured more efficiently and fewer trees are required to achieve equal or better performance than BART. Via simulation studies and real data applications, we compare MOTR-BART to its main competitors. R code for MOTR-BART implementation is available at https://github.com/ebprado/MOTR-BART

    Tree models: a Bayesian perspective

    Get PDF
    Submitted in partial fulfilment of the requirements for the degree of Master of Philosophy at Queen Mary, University of London, November 2006Classical tree models represent an attempt to create nonparametric models which have good predictive powers as well a simple structure readily comprehensible by non- experts. Bayesian tree models have been created by a team consisting of Chipman, George and McCulloch and second team consisting of Denison, Mallick and Smith. Both approaches employ Green's Reversible Jump Markov Chain Monte Carlo tech- nique to carry out a more e®ective search than the `greedy' methods used classically. The aim of this work is to evaluate both types of Bayesian tree models from a Bayesian perspective and compare them
    • …
    corecore