25,128 research outputs found

    Deciding Quantifier-Free Presburger Formulas Using Parameterized Solution Bounds

    Full text link
    Given a formula in quantifier-free Presburger arithmetic, if it has a satisfying solution, there is one whose size, measured in bits, is polynomially bounded in the size of the formula. In this paper, we consider a special class of quantifier-free Presburger formulas in which most linear constraints are difference (separation) constraints, and the non-difference constraints are sparse. This class has been observed to commonly occur in software verification. We derive a new solution bound in terms of parameters characterizing the sparseness of linear constraints and the number of non-difference constraints, in addition to traditional measures of formula size. In particular, we show that the number of bits needed per integer variable is linear in the number of non-difference constraints and logarithmic in the number and size of non-zero coefficients in them, but is otherwise independent of the total number of linear constraints in the formula. The derived bound can be used in a decision procedure based on instantiating integer variables over a finite domain and translating the input quantifier-free Presburger formula to an equi-satisfiable Boolean formula, which is then checked using a Boolean satisfiability solver. In addition to our main theoretical result, we discuss several optimizations for deriving tighter bounds in practice. Empirical evidence indicates that our decision procedure can greatly outperform other decision procedures.Comment: 26 page

    Software Model Checking via Large-Block Encoding

    Get PDF
    The construction and analysis of an abstract reachability tree (ART) are the basis for a successful method for software verification. The ART represents unwindings of the control-flow graph of the program. Traditionally, a transition of the ART represents a single block of the program, and therefore, we call this approach single-block encoding (SBE). SBE may result in a huge number of program paths to be explored, which constitutes a fundamental source of inefficiency. We propose a generalization of the approach, in which transitions of the ART represent larger portions of the program; we call this approach large-block encoding (LBE). LBE may reduce the number of paths to be explored up to exponentially. Within this framework, we also investigate symbolic representations: for representing abstract states, in addition to conjunctions as used in SBE, we investigate the use of arbitrary Boolean formulas; for computing abstract-successor states, in addition to Cartesian predicate abstraction as used in SBE, we investigate the use of Boolean predicate abstraction. The new encoding leverages the efficiency of state-of-the-art SMT solvers, which can symbolically compute abstract large-block successors. Our experiments on benchmark C programs show that the large-block encoding outperforms the single-block encoding.Comment: 13 pages (11 without cover), 4 figures, 5 table

    Model Checking with Program Slicing Based on Variable Dependence Graphs

    Full text link
    In embedded control systems, the potential risks of software defects have been increasing because of software complexity which leads to, for example, timing related problems. These defects are rarely found by tests or simulations. To detect such defects, we propose a modeling method which can generate software models for model checking with a program slicing technique based on a variable dependence graph. We have applied the proposed method to one case in automotive control software and demonstrated the effectiveness of the method. Furthermore, we developed a software tool to automate model generation and achieved a 35% decrease in total verification time on model checking.Comment: In Proceedings FTSCS 2012, arXiv:1212.657
    corecore