12,351 research outputs found

    Knowledge Representation Concepts for Automated SLA Management

    Full text link
    Outsourcing of complex IT infrastructure to IT service providers has increased substantially during the past years. IT service providers must be able to fulfil their service-quality commitments based upon predefined Service Level Agreements (SLAs) with the service customer. They need to manage, execute and maintain thousands of SLAs for different customers and different types of services, which needs new levels of flexibility and automation not available with the current technology. The complexity of contractual logic in SLAs requires new forms of knowledge representation to automatically draw inferences and execute contractual agreements. A logic-based approach provides several advantages including automated rule chaining allowing for compact knowledge representation as well as flexibility to adapt to rapidly changing business requirements. We suggest adequate logical formalisms for representation and enforcement of SLA rules and describe a proof-of-concept implementation. The article describes selected formalisms of the ContractLog KR and their adequacy for automated SLA management and presents results of experiments to demonstrate flexibility and scalability of the approach.Comment: Paschke, A. and Bichler, M.: Knowledge Representation Concepts for Automated SLA Management, Int. Journal of Decision Support Systems (DSS), submitted 19th March 200

    An automated ETL for online datasets

    Get PDF
    While using online datasets for machine learning is commonplace today, the quality of these datasets impacts on the performance of prediction algorithms. One method for improving the semantics of new data sources is to map these sources to a common data model or ontology. While semantic and structural heterogeneities must still be resolved, this provides a well established approach to providing clean datasets, suitable for machine learning and analysis. However, when there is a requirement for a close to real time usage of online data, a method for dynamic Extract-Transform-Load of new sources data must be developed. In this work, we present a framework for integrating online and enterprise data sources, in close to real time, to provide datasets for machine learning and predictive algorithms. An exhaustive evaluation compares a human built data transformation process with our system’s machine generated ETL process, with very favourable results, illustrating the value and impact of an automated approach

    An automated ETL for online datasets

    Get PDF
    While using online datasets for machine learning is commonplace today, the quality of these datasets impacts on the performance of prediction algorithms. One method for improving the semantics of new data sources is to map these sources to a common data model or ontology. While semantic and structural heterogeneities must still be resolved, this provides a well established approach to providing clean datasets, suitable for machine learning and analysis. However, when there is a requirement for a close to real time usage of online data, a method for dynamic Extract-Transform-Load of new sources data must be developed. In this work, we present a framework for integrating online and enterprise data sources, in close to real time, to provide datasets for machine learning and predictive algorithms. An exhaustive evaluation compares a human built data transformation process with our system’s machine generated ETL process, with very favourable results, illustrating the value and impact of an automated approach

    An automated ETL for online datasets

    Get PDF
    While using online datasets for machine learning is commonplace today, the quality of these datasets impacts on the performance of prediction algorithms. One method for improving the semantics of new data sources is to map these sources to a common data model or ontology. While semantic and structural heterogeneities must still be resolved, this provides a well established approach to providing clean datasets, suitable for machine learning and analysis. However, when there is a requirement for a close to real time usage of online data, a method for dynamic Extract-Transform-Load of new sources data must be developed. In this work, we present a framework for integrating online and enterprise data sources, in close to real time, to provide datasets for machine learning and predictive algorithms. An exhaustive evaluation compares a human built data transformation process with our system’s machine generated ETL process, with very favourable results, illustrating the value and impact of an automated approach

    Logic Programming Applications: What Are the Abstractions and Implementations?

    Full text link
    This article presents an overview of applications of logic programming, classifying them based on the abstractions and implementations of logic languages that support the applications. The three key abstractions are join, recursion, and constraint. Their essential implementations are for-loops, fixed points, and backtracking, respectively. The corresponding kinds of applications are database queries, inductive analysis, and combinatorial search, respectively. We also discuss language extensions and programming paradigms, summarize example application problems by application areas, and touch on example systems that support variants of the abstractions with different implementations

    Reducing the Number of Annotations in a Verification-oriented Imperative Language

    Full text link
    Automated software verification is a very active field of research which has made enormous progress both in theoretical and practical aspects. Recently, an important amount of research effort has been put into applying these techniques on top of mainstream programming languages. These languages typically provide powerful features such as reflection, aliasing and polymorphism which are handy for practitioners but, in contrast, make verification a real challenge. In this work we present Pest, a simple experimental, while-style, multiprocedural, imperative programming language which was conceived with verifiability as one of its main goals. This language forces developers to concurrently think about both the statements needed to implement an algorithm and the assertions required to prove its correctness. In order to aid programmers, we propose several techniques to reduce the number and complexity of annotations required to successfully verify their programs. In particular, we show that high-level iteration constructs may alleviate the need for providing complex loop annotations.Comment: 15 pages, 8 figure
    corecore