308 research outputs found

    The diameter of type D associahedra and the non-leaving-face property

    Full text link
    Generalized associahedra were introduced by S. Fomin and A. Zelevinsky in connection to finite type cluster algebras. Following recent work of L. Pournin in types AA and BB, this paper focuses on geodesic properties of generalized associahedra. We prove that the graph diameter of the nn-dimensional associahedron of type DD is precisely 2n22n-2 for all nn greater than 11. Furthermore, we show that all type BCDBCD associahedra have the non-leaving-face property, that is, any geodesic connecting two vertices in the graph of the polytope stays in the minimal face containing both. This property was already proven by D. Sleator, R. Tarjan and W. Thurston for associahedra of type AA. In contrast, we present relevant examples related to the associahedron that do not always satisfy this property.Comment: 18 pages, 14 figures. Version 3: improved presentation, simplification of Section 4.1. Final versio

    Colorful Associahedra and Cyclohedra

    Full text link
    Every n-edge colored n-regular graph G naturally gives rise to a simple abstract n-polytope, the colorful polytope of G, whose 1-skeleton is isomorphic to G. The paper describes colorful polytope versions of the associahedron and cyclohedron. Like their classical counterparts, the colorful associahedron and cyclohedron encode triangulations and flips, but now with the added feature that the diagonals of the triangulations are colored and adjacency of triangulations requires color preserving flips. The colorful associahedron and cyclohedron are derived as colorful polytopes from the edge colored graph whose vertices represent these triangulations and whose colors on edges represent the colors of flipped diagonals.Comment: 21 pp, to appear in Journal Combinatorial Theory

    Realizations of the associahedron and cyclohedron

    Full text link
    We describe many different realizations with integer coordinates for the associahedron (i.e. the Stasheff polytope) and for the cyclohedron (i.e. the Bott-Taubes polytope) and compare them to the permutahedron of type A_n and B_n respectively. The coordinates are obtained by an algorithm which uses an oriented Coxeter graph of type A_n or B_n respectively as only input and which specialises to a procedure presented by J.-L. Loday for a certain orientation of A_n. The described realizations have cambrian fans of type A and B as normal fans. This settles a conjecture of N. Reading for cambrian fans of these types.Comment: v2: 18 pages, 7 figures; updated version has revised introduction and updated Section 4; v3: 21 pages, 2 new figures, added statement (b) in Proposition 1.4. and 1.7 plus extended proof; added references [1], [29], [30]; minor changes with respect to presentatio

    Once punctured disks, non-convex polygons, and pointihedra

    Get PDF
    We explore several families of flip-graphs, all related to polygons or punctured polygons. In particular, we consider the topological flip-graphs of once-punctured polygons which, in turn, contain all possible geometric flip-graphs of polygons with a marked point as embedded sub-graphs. Our main focus is on the geometric properties of these graphs and how they relate to one another. In particular, we show that the embeddings between them are strongly convex (or, said otherwise, totally geodesic). We also find bounds on the diameters of these graphs, sometimes using the strongly convex embeddings. Finally, we show how these graphs relate to different polytopes, namely type D associahedra and a family of secondary polytopes which we call pointihedra.Comment: 24 pages, 6 figure

    Associahedra via spines

    Full text link
    An associahedron is a polytope whose vertices correspond to triangulations of a convex polygon and whose edges correspond to flips between them. Using labeled polygons, C. Hohlweg and C. Lange constructed various realizations of the associahedron with relevant properties related to the symmetric group and the classical permutahedron. We introduce the spine of a triangulation as its dual tree together with a labeling and an orientation. This notion extends the classical understanding of the associahedron via binary trees, introduces a new perspective on C. Hohlweg and C. Lange's construction closer to J.-L. Loday's original approach, and sheds light upon the combinatorial and geometric properties of the resulting realizations of the associahedron. It also leads to noteworthy proofs which shorten and simplify previous approaches.Comment: 27 pages, 11 figures. Version 5: minor correction
    corecore