9,037 research outputs found

    Capacity of All Nine Models of Channel Output Feedback for the Two-user Interference Channel

    Full text link
    In this paper, we study the impact of different channel output feedback architectures on the capacity of the two-user interference channel. For a two-user interference channel, a feedback link can exist between receivers and transmitters in 9 canonical architectures (see Fig. 2), ranging from only one feedback link to four feedback links. We derive the exact capacity region for the symmetric deterministic interference channel and the constant-gap capacity region for the symmetric Gaussian interference channel for all of the 9 architectures. We show that for a linear deterministic symmetric interference channel, in the weak interference regime, all models of feedback, except the one, which has only one of the receivers feeding back to its own transmitter, have the identical capacity region. When only one of the receivers feeds back to its own transmitter, the capacity region is a strict subset of the capacity region of the rest of the feedback models in the weak interference regime. However, the sum-capacity of all feedback models is identical in the weak interference regime. Moreover, in the strong interference regime all models of feedback with at least one of the receivers feeding back to its own transmitter have the identical sum-capacity. For the Gaussian interference channel, the results of the linear deterministic model follow, where capacity is replaced with approximate capacity.Comment: submitted to IEEE Transactions on Information Theory, results improved by deriving capacity region of all 9 canonical feedback models in two-user interference channe

    Incremental Relaying for the Gaussian Interference Channel with a Degraded Broadcasting Relay

    Full text link
    This paper studies incremental relay strategies for a two-user Gaussian relay-interference channel with an in-band-reception and out-of-band-transmission relay, where the link between the relay and the two receivers is modelled as a degraded broadcast channel. It is shown that generalized hash-and-forward (GHF) can achieve the capacity region of this channel to within a constant number of bits in a certain weak relay regime, where the transmitter-to-relay link gains are not unboundedly stronger than the interference links between the transmitters and the receivers. The GHF relaying strategy is ideally suited for the broadcasting relay because it can be implemented in an incremental fashion, i.e., the relay message to one receiver is a degraded version of the message to the other receiver. A generalized-degree-of-freedom (GDoF) analysis in the high signal-to-noise ratio (SNR) regime reveals that in the symmetric channel setting, each common relay bit can improve the sum rate roughly by either one bit or two bits asymptotically depending on the operating regime, and the rate gain can be interpreted as coming solely from the improvement of the common message rates, or alternatively in the very weak interference regime as solely coming from the rate improvement of the private messages. Further, this paper studies an asymmetric case in which the relay has only a single single link to one of the destinations. It is shown that with only one relay-destination link, the approximate capacity region can be established for a larger regime of channel parameters. Further, from a GDoF point of view, the sum-capacity gain due to the relay can now be thought as coming from either signal relaying only, or interference forwarding only.Comment: To appear in IEEE Trans. on Inf. Theor
    • …
    corecore