2 research outputs found

    Lip syncing method for realistic expressive three-dimensional face model

    Get PDF
    Lip synchronization of 3D face model is now being used in a multitude of important fields. It brings a more human and dramatic reality to computer games, films and interactive multimedia, and is growing in use and importance. High level realism can be used in demanding applications such as computer games and cinema. Authoring lip syncing with complex and subtle expressions is still difficult and fraught with problems in terms of realism. Thus, this study proposes a lip syncing method of realistic expressive 3D face model. Animated lips require a 3D face model capable of representing the movement of face muscles during speech and a method to produce the correct lip shape at the correct time. The 3D face model is designed based on MPEG-4 facial animation standard to support lip syncing that is aligned with input audio file. It deforms using Raised Cosine Deformation function that is grafted onto the input facial geometry. This study also proposes a method to animate the 3D face model over time to create animated lip syncing using a canonical set of visemes for all pairwise combinations of a reduced phoneme set called ProPhone. Finally, this study integrates emotions by considering both Ekman model and Plutchik’s wheel with emotive eye movements by implementing Emotional Eye Movements Markup Language to produce realistic 3D face model. The experimental results show that the proposed model can generate visually satisfactory animations with Mean Square Error of 0.0020 for neutral, 0.0024 for happy expression, 0.0020 for angry expression, 0.0030 for fear expression, 0.0026 for surprise expression, 0.0010 for disgust expression, and 0.0030 for sad expression

    Adaptive threshold optimisation for colour-based lip segmentation in automatic lip-reading systems

    Get PDF
    A thesis submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in ful lment of the requirements for the degree of Doctor of Philosophy. Johannesburg, September 2016Having survived the ordeal of a laryngectomy, the patient must come to terms with the resulting loss of speech. With recent advances in portable computing power, automatic lip-reading (ALR) may become a viable approach to voice restoration. This thesis addresses the image processing aspect of ALR, and focuses three contributions to colour-based lip segmentation. The rst contribution concerns the colour transform to enhance the contrast between the lips and skin. This thesis presents the most comprehensive study to date by measuring the overlap between lip and skin histograms for 33 di erent colour transforms. The hue component of HSV obtains the lowest overlap of 6:15%, and results show that selecting the correct transform can increase the segmentation accuracy by up to three times. The second contribution is the development of a new lip segmentation algorithm that utilises the best colour transforms from the comparative study. The algorithm is tested on 895 images and achieves percentage overlap (OL) of 92:23% and segmentation error (SE) of 7:39 %. The third contribution focuses on the impact of the histogram threshold on the segmentation accuracy, and introduces a novel technique called Adaptive Threshold Optimisation (ATO) to select a better threshold value. The rst stage of ATO incorporates -SVR to train the lip shape model. ATO then uses feedback of shape information to validate and optimise the threshold. After applying ATO, the SE decreases from 7:65% to 6:50%, corresponding to an absolute improvement of 1:15 pp or relative improvement of 15:1%. While this thesis concerns lip segmentation in particular, ATO is a threshold selection technique that can be used in various segmentation applications.MT201
    corecore