240 research outputs found

    Računalna mehanika u znanosti i inženjerstvu – Quo vadis

    Get PDF
    Computational Mechanics has many applications in science and engineering. Its range of application has been enlarged widely in the recent decades. Hence, nowadays areas such as biomechanics and additive manufacturing are among the new research topics, in which computational mechanics helps solve complex problems and processes. In this contribution, these emerging areas will be discussed together with new discretization schemes, e. g. virtual element method and particle methods, whereby the latter need high performance computing facilities in order to solve problems such as mixing in an accurate way. Failure analysis of structures and components is another topic that is developing fast. Here, modern computational approaches rely on the phase field method that simplifies discretizations schemes. All these approaches and methods are discussed and evaluated by means of examples.Računalna mehanika ima široku primjenu u znanosti i inženjerstvu. Njeno područje primjene se znatno povećalo u zadnjim desetljećima. Danas polja kao biomehanika i aditivna proizvodnja nova su područja istraživanja u kojima računalna mehanika pomaže rješavati složene probleme i procese. U radu se razmatraju ova granična područja zajedno s novim diskretizacijskim postupcima kao što su metoda virtualnih elemenata i metoda čestica, gdje potonja zahtijeva moćnu računalnu opremu da bi se mogli točno riješiti problemi kao što je miješanje. Analiza oštećenja konstrukcija i njenih komponenata je drugo područje koje se brzo razvija, pa se ovdje moderni računalni postupci odnose na metodu faznih polja koja pojednostavljuje diskretizacijske sheme. Svi navedeni postupci i metode su razmatrani i vrednovani u numeričkim primjerima

    Peridynamics review

    Get PDF
    Peridynamics (PD) is a novel continuum mechanics theory established by Stewart Silling in 2000 [1]. The roots of PD can be traced back to the early works of Gabrio Piola according to dell'Isola et al. [2]. PD has been attractive to researchers as it is a nonlocal formulation in an integral form; unlike the local differential form of classical continuum mechanics. Although the method is still in its infancy, the literature on PD is fairly rich and extensive. The prolific growth in PD applications has led to a tremendous number of contributions in various disciplines. This manuscript aims to provide a concise description of the peridynamic theory together with a review of its major applications and related studies in different fields to date. Moreover, we succinctly highlight some lines of research that are yet to be investigated

    Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity

    Get PDF
    AbstractGradient theories, as a regularized continuum mechanics approach, have found wide applications for modeling strain localization failure process. This paper presents a second gradient stress–strain damage elasticity theory based upon the method of virtual power. The theory considers the strain gradient and its conjugated double stresses. Instead of introducing an intrinsic material length scale into the constitutive law in an ad hoc fashion, a microstructural granular mechanics approach is applied to derive the higher-order constitutive coefficients such that the internal length scale parameter reflects the natural granularity of the underlying material microstructure. The derivations of the required damage constitutive relationships, the strong form governing equations as well as its weak form for the second gradient model are described. The recently popularized Element-Free Galerkin (EFG) method is then employed to discretize the weak form equilibrium equation for accommodating the resultant higher-order continuity requirements and further handling the mesh sensitivity problem. Numerical examples for shear band simulations show that the proposed second gradient continuum model can produce stable, accurate as well as mesh-size independent solutions without a priori assumption of the shear band path

    Artificial Intelligence in Materials Modeling and Design

    Get PDF
    In recent decades, the use of artificial intelligence (AI) techniques in the field of materials modeling has received significant attention owing to their excellent ability to analyze a vast amount of data and reveal correlations between several complex interrelated phenomena. In this review paper, we summarize recent advances in the applications of AI techniques for numerical modeling of different types of materials. AI techniques such as machine learning and deep learning show great advantages and potential for predicting important mechanical properties of materials and reveal how changes in certain principal parameters affect the overall behavior of engineering materials. Furthermore, in this review, we show that the application of AI techniques can significantly help to improve the design and optimize the properties of future advanced engineering materials. Finally, a perspective on the challenges and prospects of the applications of AI techniques for material modeling is presented

    Computational modeling of the mechanics of hierarchical materials

    Get PDF
    Structural hierarchy coupled with material heterogeneity is often identifi ed in natural materials, from the nano- to the macroscale. It combines disparate mechanical properties, such as strength and toughness, and multifunctionality, such as smart adhesion, water repellence, self-cleaning, and self-healing. Hierarchical architectures can be employed in synthetic bioinspired structured materials, also adopting constituents with superior mechanical properties, such as carbon nanotubes or graphene. Advanced computational modeling is essential to understand the complex mechanisms that couple material, structural, and topological hierarchy, merging phenomena of different nature, size, and time scales. Numerical modeling also allows extensive parametric studies for the optimization of material properties and arrangement, avoiding time-consuming and complex experimental trials, and providing guidance in the fabrication of novel advanced materials. Here, we review some of the most promising approaches, with a focus on the methods developed by our group

    Investigation of the use of meshfree methods for haptic thermal management of design and simulation of MEMS

    Get PDF
    This thesis presents a novel approach of using haptic sensing technology combined with virtual environment (VE) for the thermal management of Micro-Electro-Mechanical-Systems (MEMS) design. The goal is to reduce the development cycle by avoiding the costly iterative prototyping procedure. In this regard, we use haptic feedback with virtua lprototyping along with an immersing environment. We also aim to improve the productivity and capability of the designer to better grasp the phenomena operating at the micro-scale level, as well as to augment computational steering through haptic channels. To validate the concept of haptic thermal management, we have implemented a demonstrator with a user friendly interface which allows to intuitively "feel" the temperature field through our concept of haptic texturing. The temperature field in a simple MEMS component is modeled using finite element methods (FEM) or finite difference method (FDM) and the user is able to feel thermal expansion using a combination of different haptic feedback. In haptic application, the force rendering loop needs to be updated at a frequency of 1Khz in order to maintain continuity in the user perception. When using FEM or FDM for our three-dimensional model, the computational cost increases rapidly as the mesh size is reduced to ensure accuracy. Hence, it constrains the complexity of the physical model to approximate temperature or stress field solution. It would also be difficult to generate or refine the mesh in real time for CAD process. In order to circumvent the limitations due to the use of conventional mesh-based techniques and to avoid the bothersome task of generating and refining the mesh, we investigate the potential of meshfree methods in the context of our haptic application. We review and compare the different meshfree formulations against FEM mesh based technique. We have implemented the different methods for benchmarking thermal conduction and elastic problems. The main work of this thesis is to determine the relevance of the meshfree option in terms of flexibility of design and computational charge for haptic physical model
    corecore