7,090 research outputs found

    Coherent frequentism

    Full text link
    By representing the range of fair betting odds according to a pair of confidence set estimators, dual probability measures on parameter space called frequentist posteriors secure the coherence of subjective inference without any prior distribution. The closure of the set of expected losses corresponding to the dual frequentist posteriors constrains decisions without arbitrarily forcing optimization under all circumstances. This decision theory reduces to those that maximize expected utility when the pair of frequentist posteriors is induced by an exact or approximate confidence set estimator or when an automatic reduction rule is applied to the pair. In such cases, the resulting frequentist posterior is coherent in the sense that, as a probability distribution of the parameter of interest, it satisfies the axioms of the decision-theoretic and logic-theoretic systems typically cited in support of the Bayesian posterior. Unlike the p-value, the confidence level of an interval hypothesis derived from such a measure is suitable as an estimator of the indicator of hypothesis truth since it converges in sample-space probability to 1 if the hypothesis is true or to 0 otherwise under general conditions.Comment: The confidence-measure theory of inference and decision is explicitly extended to vector parameters of interest. The derivation of upper and lower confidence levels from valid and nonconservative set estimators is formalize

    Continuous Monitoring of A/B Tests without Pain: Optional Stopping in Bayesian Testing

    Full text link
    A/B testing is one of the most successful applications of statistical theory in modern Internet age. One problem of Null Hypothesis Statistical Testing (NHST), the backbone of A/B testing methodology, is that experimenters are not allowed to continuously monitor the result and make decision in real time. Many people see this restriction as a setback against the trend in the technology toward real time data analytics. Recently, Bayesian Hypothesis Testing, which intuitively is more suitable for real time decision making, attracted growing interest as an alternative to NHST. While corrections of NHST for the continuous monitoring setting are well established in the existing literature and known in A/B testing community, the debate over the issue of whether continuous monitoring is a proper practice in Bayesian testing exists among both academic researchers and general practitioners. In this paper, we formally prove the validity of Bayesian testing with continuous monitoring when proper stopping rules are used, and illustrate the theoretical results with concrete simulation illustrations. We point out common bad practices where stopping rules are not proper and also compare our methodology to NHST corrections. General guidelines for researchers and practitioners are also provided

    The Jeffreys-Lindley Paradox and Discovery Criteria in High Energy Physics

    Full text link
    The Jeffreys-Lindley paradox displays how the use of a p-value (or number of standard deviations z) in a frequentist hypothesis test can lead to an inference that is radically different from that of a Bayesian hypothesis test in the form advocated by Harold Jeffreys in the 1930s and common today. The setting is the test of a well-specified null hypothesis (such as the Standard Model of elementary particle physics, possibly with "nuisance parameters") versus a composite alternative (such as the Standard Model plus a new force of nature of unknown strength). The p-value, as well as the ratio of the likelihood under the null hypothesis to the maximized likelihood under the alternative, can strongly disfavor the null hypothesis, while the Bayesian posterior probability for the null hypothesis can be arbitrarily large. The academic statistics literature contains many impassioned comments on this paradox, yet there is no consensus either on its relevance to scientific communication or on its correct resolution. The paradox is quite relevant to frontier research in high energy physics. This paper is an attempt to explain the situation to both physicists and statisticians, in the hope that further progress can be made.Comment: v4: Continued editing for clarity. Figure added. v5: Minor fixes to biblio. Same as published version except for minor copy-edits, Synthese (2014). v6: fix typos, and restore garbled sentence at beginning of Sec 4 to v

    Approximate Bayesian Model Selection with the Deviance Statistic

    Full text link
    Bayesian model selection poses two main challenges: the specification of parameter priors for all models, and the computation of the resulting Bayes factors between models. There is now a large literature on automatic and objective parameter priors in the linear model. One important class are gg-priors, which were recently extended from linear to generalized linear models (GLMs). We show that the resulting Bayes factors can be approximated by test-based Bayes factors (Johnson [Scand. J. Stat. 35 (2008) 354-368]) using the deviance statistics of the models. To estimate the hyperparameter gg, we propose empirical and fully Bayes approaches and link the former to minimum Bayes factors and shrinkage estimates from the literature. Furthermore, we describe how to approximate the corresponding posterior distribution of the regression coefficients based on the standard GLM output. We illustrate the approach with the development of a clinical prediction model for 30-day survival in the GUSTO-I trial using logistic regression.Comment: Published at http://dx.doi.org/10.1214/14-STS510 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Exact asymptotic distribution of change-point mle for change in the mean of Gaussian sequences

    Full text link
    We derive exact computable expressions for the asymptotic distribution of the change-point mle when a change in the mean occurred at an unknown point of a sequence of time-ordered independent Gaussian random variables. The derivation, which assumes that nuisance parameters such as the amount of change and variance are known, is based on ladder heights of Gaussian random walks hitting the half-line. We then show that the exact distribution easily extends to the distribution of the change-point mle when a change occurs in the mean vector of a multivariate Gaussian process. We perform simulations to examine the accuracy of the derived distribution when nuisance parameters have to be estimated as well as robustness of the derived distribution to deviations from Gaussianity. Through simulations, we also compare it with the well-known conditional distribution of the mle, which may be interpreted as a Bayesian solution to the change-point problem. Finally, we apply the derived methodology to monthly averages of water discharges of the Nacetinsky creek, Germany.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS294 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore