5 research outputs found

    A Sparsity-Aware Adaptive Algorithm for Distributed Learning

    Get PDF
    In this paper, a sparsity-aware adaptive algorithm for distributed learning in diffusion networks is developed. The algorithm follows the set-theoretic estimation rationale. At each time instance and at each node of the network, a closed convex set, known as property set, is constructed based on the received measurements; this defines the region in which the solution is searched for. In this paper, the property sets take the form of hyperslabs. The goal is to find a point that belongs to the intersection of these hyperslabs. To this end, sparsity encouraging variable metric projections onto the hyperslabs have been adopted. Moreover, sparsity is also imposed by employing variable metric projections onto weighted 1\ell_1 balls. A combine adapt cooperation strategy is adopted. Under some mild assumptions, the scheme enjoys monotonicity, asymptotic optimality and strong convergence to a point that lies in the consensus subspace. Finally, numerical examples verify the validity of the proposed scheme, compared to other algorithms, which have been developed in the context of sparse adaptive learning

    Quasinonexpansive Iterations on the Affine Hull of Orbits: From Mann's Mean Value Algorithm to Inertial Methods

    Full text link
    Fixed point iterations play a central role in the design and the analysis of a large number of optimization algorithms. We study a new iterative scheme in which the update is obtained by applying a composition of quasinonexpansive operators to a point in the affine hull of the orbit generated up to the current iterate. This investigation unifies several algorithmic constructs, including Mann's mean value method, inertial methods, and multi-layer memoryless methods. It also provides a framework for the development of new algorithms, such as those we propose for solving monotone inclusion and minimization problems
    corecore