7,088 research outputs found

    Gamma Rays from Star Formation in Clusters of Galaxies

    Full text link
    Star formation in galaxies is observed to be associated with gamma-ray emission. The detection of gamma rays from star-forming galaxies by the Fermi Large Area Telescope (LAT) has allowed the determination of a functional relationship between star formation rate and gamma-ray luminosity (Ackermann et. al. 2012). Since star formation is known to scale with total infrared (8-1000 micrometers) and radio (1.4 GHz) luminosity, the observed infrared and radio emission from a star-forming galaxy can be used to quantitatively infer the galaxy's gamma-ray luminosity. Similarly, star forming galaxies within galaxy clusters allow us to derive lower limits on the gamma-ray emission from clusters, which have not yet been conclusively detected in gamma rays. In this study we apply the relationships between gamma-ray luminosity and radio and IR luminosities derived in Ackermann et. al. 2012 to a sample of galaxy clusters from Ackermann et. al. 2010 in order to place lower limits on the gamma-ray emission associated with star formation in galaxy clusters. We find that several clusters have predicted lower limits on gamma-ray emission that are within an order of magnitude of the upper limits derived in Ackermann et. al. 2010 based on non-detection by Fermi-LAT. Given the current gamma-ray limits, star formation likely plays a significant role in the gamma-ray emission in some clusters, especially those with cool cores. We predict that both Fermi-LAT over the course of its lifetime and the future Cherenkov Telescope Array will be able to detect gamma-ray emission from star-forming galaxies in clusters.Comment: 17 pages, 2 figures, 2 tables. Minor revisions made to match version accepted to Ap

    News : 1/11 / Center for Financial Studies

    Get PDF
    Research and Policy 3 ; CFS Publications 3 ; CFS Financial Center Index 10 ; Events 12 ; CFS Visitors Program 12 ; CFS Colloquium 13 ; CFS Lectures 14 ; The Deutsche Bank Prize in Financial Economics 22 ; The ECB and Its Watchers 25 ; News from CFS 2

    Constraints on Decaying Dark Matter from Fermi Observations of Nearby Galaxies and Clusters

    Full text link
    We analyze the impact of Fermi gamma-ray observations (primarily non-detections) of selected nearby galaxies, including dwarf spheroidals, and of clusters of galaxies on decaying dark matter models. We show that the fact that galaxy clusters do not shine in gamma rays puts the most stringent limits available to-date on the lifetime of dark matter particles for a wide range of particle masses and decay final states. In particular, our results put strong constraints on the possibility of ascribing to decaying dark matter both the increasing positron fraction reported by PAMELA and the high-energy feature in the electron-positron spectrum measured by Fermi. Observations of nearby dwarf galaxies and of the Andromeda Galaxy (M31) do not provide as strong limits as those from galaxy clusters, while still improving on previous constraints in some cases.Comment: 27 pages, 5 figures, submitted to JCAP, revised version with some additions and correction

    The Distance to Nova V959 Mon from VLA Imaging

    Get PDF
    Determining reliable distances to classical novae is a challenging but crucial step in deriving their ejected masses and explosion energetics. Here we combine radio expansion measurements from the Karl G. Jansky Very Large Array with velocities derived from optical spectra to estimate an expansion parallax for nova V959 Mon, the first nova discovered through its gamma-ray emission. We spatially resolve the nova at frequencies of 4.5-36.5 GHz in nine different imaging epochs. The first five epochs cover the expansion of the ejecta from 2012 October to 2013 January, while the final four epochs span 2014 February to 2014 May. These observations correspond to days 126 through 199 and days 615 through 703 after the first detection of the nova. The images clearly show a non-spherical ejecta geometry. Utilizing ejecta velocities derived from 3D modelling of optical spectroscopy, the radio expansion implies a distance between 0.9 +/- 0.2 and 2.2 +/- 0.4 kpc, with a most probable distance of 1.4 +/- 0.4 kpc. This distance implies a gamma-ray luminosity much less than the prototype gamma-ray-detected nova, V407 Cyg, possibly due to the lack of a red giant companion in the V959 Mon system. V959 Mon also has a much lower gamma-ray luminosity than other classical novae detected in gamma-rays to date, indicating a range of at least a factor of 10 in the gamma-ray luminosities for these explosions.Comment: 11 pages, 8 figures, 3 tables, submitted to ApJ 2015-01-21, under revie

    A method for comparing non-nested models with application to astrophysical searches for new physics

    Full text link
    Searches for unknown physics and decisions between competing astrophysical models to explain data both rely on statistical hypothesis testing. The usual approach in searches for new physical phenomena is based on the statistical Likelihood Ratio Test (LRT) and its asymptotic properties. In the common situation, when neither of the two models under comparison is a special case of the other i.e., when the hypotheses are non-nested, this test is not applicable. In astrophysics, this problem occurs when two models that reside in different parameter spaces are to be compared. An important example is the recently reported excess emission in astrophysical Îł\gamma-rays and the question whether its origin is known astrophysics or dark matter. We develop and study a new, simple, generally applicable, frequentist method and validate its statistical properties using a suite of simulations studies. We exemplify it on realistic simulated data of the Fermi-LAT Îł\gamma-ray satellite, where non-nested hypotheses testing appears in the search for particle dark matter.Comment: We welcome examples of non-nested models testing problem

    Searching for Dark Matter Annihilation in the Smith High-Velocity Cloud

    Get PDF
    Recent observations suggest that some high-velocity clouds may be confined by massive dark matter halos. In particular, the proximity and proposed dark matter content of the Smith Cloud make it a tempting target for the indirect detection of dark matter annihilation. We argue that the Smith Cloud may be a better target than some Milky Way dwarf spheroidal satellite galaxies and use gamma-ray observations from the Fermi Large Area Telescope to search for a dark matter annihilation signal. No significant gamma-ray excess is found coincident with the Smith Cloud, and we set strong limits on the dark matter annihilation cross section assuming a spatially-extended dark matter profile consistent with dynamical modeling of the Smith Cloud. Notably, these limits exclude the canonical thermal relic cross section (∌3×10−26cm3s−1\sim 3\times10^{-26}{\rm cm}^{3}{\rm s}^{-1}) for dark matter masses â‰Č30\lesssim 30 GeV annihilating via the bbˉb \bar b or τ+τ−\tau^{+}\tau^{-} channels for certain assumptions of the dark matter density profile; however, uncertainties in the dark matter content of the Smith Cloud may significantly weaken these constraints.Comment: 7 pages, 5 figures. Published in Ap
    • 

    corecore