15 research outputs found

    Decomposition Methods for Large Scale LP Decoding

    Full text link
    When binary linear error-correcting codes are used over symmetric channels, a relaxed version of the maximum likelihood decoding problem can be stated as a linear program (LP). This LP decoder can be used to decode error-correcting codes at bit-error-rates comparable to state-of-the-art belief propagation (BP) decoders, but with significantly stronger theoretical guarantees. However, LP decoding when implemented with standard LP solvers does not easily scale to the block lengths of modern error correcting codes. In this paper we draw on decomposition methods from optimization theory, specifically the Alternating Directions Method of Multipliers (ADMM), to develop efficient distributed algorithms for LP decoding. The key enabling technical result is a "two-slice" characterization of the geometry of the parity polytope, which is the convex hull of all codewords of a single parity check code. This new characterization simplifies the representation of points in the polytope. Using this simplification, we develop an efficient algorithm for Euclidean norm projection onto the parity polytope. This projection is required by ADMM and allows us to use LP decoding, with all its theoretical guarantees, to decode large-scale error correcting codes efficiently. We present numerical results for LDPC codes of lengths more than 1000. The waterfall region of LP decoding is seen to initiate at a slightly higher signal-to-noise ratio than for sum-product BP, however an error floor is not observed for LP decoding, which is not the case for BP. Our implementation of LP decoding using ADMM executes as fast as our baseline sum-product BP decoder, is fully parallelizable, and can be seen to implement a type of message-passing with a particularly simple schedule.Comment: 35 pages, 11 figures. An early version of this work appeared at the 49th Annual Allerton Conference, September 2011. This version to appear in IEEE Transactions on Information Theor

    Gradient Flow Decoding for LDPC Codes

    Full text link
    The power consumption of the integrated circuit is becoming a significant burden, particularly for large-scale signal processing tasks requiring high throughput. The decoding process of LDPC codes is such a heavy signal processing task that demands power efficiency and higher decoding throughput. A promising approach to reducing both power and latency of a decoding process is to use an analog circuit instead of a digital circuit. This paper investigates a continuous-time gradient flow-based approach for decoding LDPC codes, which employs a potential energy function similar to the objective function used in the gradient descent bit flipping (GDBF) algorithm. We experimentally demonstrate that the decoding performance of the gradient flow decoding is comparable to that of the multi-bit mode GDBF algorithm. Since an analog circuit of the gradient flow decoding requires only analog arithmetic operations and an integrator, future advancements in programmable analog integrated circuits may make practical implementation feasible.Comment: 6 page

    ADMM and Reproducing Sum-Product Decoding Algorithm Applied to QC-MDPC Code-based McEliece Cryptosystems

    Get PDF
    QC-MDPC (quasi cyclic moderate density parity check) code-based McEliece cryptosystems are considered to be one of the candidates for post-quantum cryptography. Decreasing DER (decoding error rate) is one of important factor for their security, since recent attacks to these cryptosystems effectively use DER information. In this paper, we pursue the possibility of optimization-base decoding, concretely we examine ADMM (alternating direction method of multipliers), a recent developing method in optimization theory. Further, RSPA (reproducing sum-product algorithm), which efficiently reuse outputs of SPA (sum-product algorithm) is proposed for the reduction of execution time in decoding. By numerical simulations, we show that the proposing scheme shows considerable decrement in DER compared to the conventional decoding methods such as BF (bit-flipping algorithm) variants or SPA
    corecore