7,484 research outputs found

    Converging organoids and extracellular matrix::New insights into liver cancer biology

    Get PDF

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    UMSL Bulletin 2022-2023

    Get PDF
    The 2022-2023 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1087/thumbnail.jp

    A Critical Review Of Post-Secondary Education Writing During A 21st Century Education Revolution

    Get PDF
    Educational materials are effective instruments which provide information and report new discoveries uncovered by researchers in specific areas of academia. Higher education, like other education institutions, rely on instructional materials to inform its practice of educating adult learners. In post-secondary education, developmental English programs are tasked with meeting the needs of dynamic populations, thus there is a continuous need for research in this area to support its changing landscape. However, the majority of scholarly thought in this area centers on K-12 reading and writing. This paucity presents a phenomenon to the post-secondary community. This research study uses a qualitative content analysis to examine peer-reviewed journals from 2003-2017, developmental online websites, and a government issued document directed toward reforming post-secondary developmental education programs. These highly relevant sources aid educators in discovering informational support to apply best practices for student success. Developmental education serves the purpose of addressing literacy gaps for students transitioning to college-level work. The findings here illuminate the dearth of material offered to developmental educators. This study suggests the field of literacy research is fragmented and highlights an apparent blind spot in scholarly literature with regard to English writing instruction. This poses a quandary for post-secondary literacy researchers in the 21st century and establishes the necessity for the literacy research community to commit future scholarship toward equipping college educators teaching writing instruction to underprepared adult learners

    Towards Explainable Visual Anomaly Detection

    Full text link
    Anomaly detection and localization of visual data, including images and videos, are of great significance in both machine learning academia and applied real-world scenarios. Despite the rapid development of visual anomaly detection techniques in recent years, the interpretations of these black-box models and reasonable explanations of why anomalies can be distinguished out are scarce. This paper provides the first survey concentrated on explainable visual anomaly detection methods. We first introduce the basic background of image-level anomaly detection and video-level anomaly detection, followed by the current explainable approaches for visual anomaly detection. Then, as the main content of this survey, a comprehensive and exhaustive literature review of explainable anomaly detection methods for both images and videos is presented. Finally, we discuss several promising future directions and open problems to explore on the explainability of visual anomaly detection

    Enabling Deep Neural Network Inferences on Resource-constraint Devices

    Get PDF
    Department of Computer Science and EngineeringWhile deep neural networks (DNN) are widely used on various devices, including resource-constraint devices such as IoT, AR/VR, and mobile devices, running DNN from resource-constrained devices remains challenging. There exist three approaches for DNN inferences on resource-constraint devices: 1) lightweight DNN for on-device computing, 2) offloading DNN inferences to a cloud server, and 3) split computing to utilize computation and network resources efficiently. Designing a lightweight DNN without compromising the accuracy of DNN is challenging due to a trade-off between latency and accuracy, that more computation is required to achieve higher accuracy. One solution to overcome this challenge is pre-processing to extract and transfer helpful information to achieve high accuracy of DNN. We design the pre-processing, which consists of three processes. The first process of pre-processing is finding out the best input source. The second process is the input-processing which extracts and contains important information for DNN inferences among the whole information gained from the input source. The last process is choosing or designing a suitable lightweight DNN for processed input. As an instance of how to apply the pre-processing, in Sec 2, we present a new transportation mode recognition system for smartphones called DeepVehicleSense, which aims at achieving three performance objectives: high accuracy, low latency, and low power consumption at once by exploiting sound characteristics captured from the built-in microphone while being on candidate transportations. To achieve high accuracy and low latency, DeepVehicleSense makes use of non-linear filters that can best extract the transportation sound samples. For the recognition of five different transportation modes, we design a deep learning-based sound classifier using a novel deep neural network architecture with multiple branches. Our staged inference technique can significantly reduce runtime and energy consumption while maintaining high accuracy for the majority of samples. Offloading DNN inferences to a server is a solution for DNN inferences on resource-constraint devices, but there is one concern about latency caused by data transmission. To reduce transmission latency, recent studies have tried to make this offloading process more efficient by compressing data to be offloaded. However, conventional compression techniques are designed for human beings, so they compress data to be possible to restore data, which looks like the original from the perspective of human eyes. As a result, the compressed data through the compression technique contains redundancy beyond the necessary information for DNN inference. In other words, the most fundamental question on extracting and offloading the minimal amount of necessary information that does not degrade the inference accuracy has remained unanswered. To answer the question, in Sec 3, we call such an ideal offloading semantic offloading and propose N-epitomizer, a new offloading framework that enables semantic offloading, thus achieving more reliable and timely inferences in highly-fluctuated or even low-bandwidth wireless networks. To realize N-epitomizer, we design an autoencoder-based scalable encoder trained to extract the most informative data and scale its output size to meet the latency and accuracy requirements of inferences over a network. Even though our proposed lightweight DNN and offloading framework with the essential information extractor achieve low latency while preserving DNN performance, they alone cannot realize latency-guaranteed DNN inferences. To realize latency-guaranteed DNN inferences, the computational complexity of the lightweight DNN and the compression performance of the encoder for offloading should be adaptively selected according to current computation resources and network conditions by utilizing the DNN's trade-off between computational complexity and DNN performance and the encoder's trade-off between compression performance and DNN performance. To this end, we propose a new framework for latency-guaranteed DNN inferences called LG-DI, which predicts DNN performance degradation given a latency budget in advance and utilizes the better method between the lightweight DNN and offloading with compression. As a result, our proposed framework for DNN inferences can guarantee latency regardless of changes in computation and network resources while maintaining DNN performance as much as possible.ope

    Advances and Challenges of Multi-task Learning Method in Recommender System: A Survey

    Full text link
    Multi-task learning has been widely applied in computational vision, natural language processing and other fields, which has achieved well performance. In recent years, a lot of work about multi-task learning recommender system has been yielded, but there is no previous literature to summarize these works. To bridge this gap, we provide a systematic literature survey about multi-task recommender systems, aiming to help researchers and practitioners quickly understand the current progress in this direction. In this survey, we first introduce the background and the motivation of the multi-task learning-based recommender systems. Then we provide a taxonomy of multi-task learning-based recommendation methods according to the different stages of multi-task learning techniques, which including task relationship discovery, model architecture and optimization strategy. Finally, we raise discussions on the application and promising future directions in this area
    • 

    corecore