16,519 research outputs found

    Quasiparticle picture from the Bekenstein bound

    Full text link
    We provide general arguments regarding the connection between low-energy theories (gravity and quantum field theory) and a hypothetical fundamental theory of quantum gravity, under the assumptions of (i) validity of the holographic bound and (ii) preservation of unitary evolution at the level of the fundamental theory. In particular, the appeal to the holographic bound imposed on generic physical systems by the Bekenstein-Hawking entropy implies that both classical geometry and quantum fields propagating on it should be regarded as phenomena emergent from the dynamics of the fundamental theory. The reshuffling of the fundamental degrees of freedom during the unitary evolution then leads to an entanglement between geometry and quantum fields. The consequences of such scenario are considered in the context of black hole evaporation and the related information-loss issue: we provide a simplistic toy model in which an average loss of information is obtained as a consequence of the geometry-field entanglement.Comment: 11 pages, 1 figure, Corfu Summer Institute 2017 'School and Workshops on Elementary Particle Physics and Gravity', 2-28 September 2017, Corfu, Greec

    Emergent Dark Matter in Late Time Universe on Holographic Screen

    Full text link
    We discuss a scenario that the dark matter in late time universe emerges as part of the holographic stress-energy tensor on the hypersurface in higher dimensional flat spacetime. Firstly we construct a toy model with a de Sitter hypersurface as the holographic screen in the flat bulk. After adding the baryonic matter on the screen, we assume that both of the dark matter and dark energy can be described by the Brown-York stress-energy tensor. From the Hamiltonian constraint equation in the flat bulk, we find an interesting relation between the dark matter and baryonic matter's energy density parameters, by comparing with the Lambda cold dark matter parameterization. We further compare this holographic embedding of emergent dark matter with traditional braneworld scenario and present an alternative interpretation as the holographic universe. It can be reduced to our toy constraint in the late time universe, with the new parameterization of the Friedmann equation. We also comment on the possible connection with Verlinde's emergent gravity, where the dark matter is treated as the elastic response of the baryonic matter on the de Sitter spacetime background. We show that from the holographic de Sitter model with elasticity, the Tully-Fisher relation and the dark matter distribution in the galaxy scale can be derived.Comment: 28 pages, 2 figures; Matches published version and we thank the referees for many insightful comments; v3: typos in the Friedmann equations are fixe

    Cosmological consequences in the framework of generalized Rastall theory of gravity

    Full text link
    The paper deals with generalized Rastall theory of gravity and its cosmological consequences in the background of homogeneous and isotropic flat FLRW model with perfect fluid as the matter context. The model shows a non singular era (emergent scenario) at the early phase of expansion for a particular choice of the Rastall parameter. Also the model finds to be equivalent to the particle creation mechanism in Einstein gravity in the framework of non-equilibrium thermodynamics. Universal thermodynamics is briefly presented and it is found that the entropy function in Rastall theory is the usual Bekenstein entropy and there is no correction to it. Finally, a complete cosmic history starting from inflation to late time acceleration is presented for suitable choices of the Rastall parameter

    Structural Aspects Of Gravitational Dynamics And The Emergent Perspective Of Gravity

    Full text link
    I describe several conceptual aspects of a particular paradigm which treats the field equations of gravity as emergent. These aspects are related to the features of classical gravitational theories which defy explanation within the conventional perspective. The alternative interpretation throws light on these features and could provide better insights into possible description of quantum structure of spacetime. This review complements the discussion in arXiv:1207.0505, which describes space itself as emergent in the cosmological context.Comment: Updated version of talks given at: (a) Sixth International School on Field Theory and Gravitation - 2012, Petropolis, Brazil; (b) Colloquium at Institute of Astrophysics, Paris, 2012 and (c) Discussion meeting on String Theory, International Centre for Theoretical Sciences, Bangalore, 201
    • …
    corecore