266 research outputs found

    Texture Analysis of Diffraction Enhanced Synchrotron Images of Trabecular Bone at the Wrist

    Get PDF
    The purpose of this study is to determine the correlation between texture features of Di raction Enhanced Imaging (DEI) images and trabecular properties of human wrist bone in the assessment of osteoporosis. Osteoporosis is a metabolic bone disorder that is characterized by reduced bone mass and a deterioration of bone structure which results in an increased fracture risk. Since the disease is preventable, diagnostic techniques are of major importance. Bone micro-architecture and Bone mineral density (BMD) are two main factors related to osteoporotic fractures. Trabecular properties like bone volume (BV), trabecular number (Tb.N), trabecular thickness (Tb.Th), bone surface (BS), and other properties of bone, characterizes the bone architecture. Currently, however, BMD is the only measurement carried out to assess osteoporosis. Researchers suggest that bone micro-architecture and texture analysis of bone images along with BMD can provide more accuracy in the assessment. We have applied texture analysis on DEI images and extracted texture features. In our study, we used fractal analysis, gray level co-occurrence matrix (GLCM), texture feature coding method (TFCM), and local binary patterns (LBP) as texture analysis methods to extract texture features. 3D Micro-CT trabecular properties were extracted using SkyScanTM CTAN software. Then, we determined the correlation between texture features and trabecular properties. GLCM energy fea- ture of DEI images explained more than 39% of variance in bone surface by volume ratio (BS/BV), 38% of variance in percent bone volume (BV/TV), and 37% of variance in trabecular number (Tb.N). TFCM homogeneity feature of DEI images explained more than 42% of variance in bone surface (BS) parameter. LBP operator - LBP 11 of DEI images explained more than 34% of vari- ance in bone surface (BS) and 30% of variance in bone surface density (BS/TV). Fractal dimension parameter of DEI images explained more than 47% of variance in bone surface (BS) and 32% of variance in bone volume (BV). This study will facilitate in the quanti cation of osteoporosis beyond conventional BMD

    Modeling of evolving textures using granulometries

    Get PDF
    This chapter describes a statistical approach to classification of dynamic texture images, called parallel evolution functions (PEFs). Traditional classification methods predict texture class membership using comparisons with a finite set of predefined texture classes and identify the closest class. However, where texture images arise from a dynamic texture evolving over time, estimation of a time state in a continuous evolutionary process is required instead. The PEF approach does this using regression modeling techniques to predict time state. It is a flexible approach which may be based on any suitable image features. Many textures are well suited to a morphological analysis and the PEF approach uses image texture features derived from a granulometric analysis of the image. The method is illustrated using both simulated images of Boolean processes and real images of corrosion. The PEF approach has particular advantages for training sets containing limited numbers of observations, which is the case in many real world industrial inspection scenarios and for which other methods can fail or perform badly. [41] G.W. Horgan, Mathematical morphology for analysing soil structure from images, European Journal of Soil Science, vol. 49, pp. 161–173, 1998. [42] G.W. Horgan, C.A. Reid and C.A. Glasbey, Biological image processing and enhancement, Image Processing and Analysis, A Practical Approach, R. Baldock and J. Graham, eds., Oxford University Press, Oxford, UK, pp. 37–67, 2000. [43] B.B. Hubbard, The World According to Wavelets: The Story of a Mathematical Technique in the Making, A.K. Peters Ltd., Wellesley, MA, 1995. [44] H. Iversen and T. Lonnestad. An evaluation of stochastic models for analysis and synthesis of gray-scale texture, Pattern Recognition Letters, vol. 15, pp. 575–585, 1994. [45] A.K. Jain and F. Farrokhnia, Unsupervised texture segmentation using Gabor filters, Pattern Recognition, vol. 24(12), pp. 1167–1186, 1991. [46] T. Jossang and F. Feder, The fractal characterization of rough surfaces, Physica Scripta, vol. T44, pp. 9–14, 1992. [47] A.K. Katsaggelos and T. Chun-Jen, Iterative image restoration, Handbook of Image and Video Processing, A. Bovik, ed., Academic Press, London, pp. 208–209, 2000. [48] M. K¨oppen, C.H. Nowack and G. R¨osel, Pareto-morphology for color image processing, Proceedings of SCIA99, 11th Scandinavian Conference on Image Analysis 1, Kangerlussuaq, Greenland, pp. 195–202, 1999. [49] S. Krishnamachari and R. Chellappa, Multiresolution Gauss-Markov random field models for texture segmentation, IEEE Transactions on Image Processing, vol. 6(2), pp. 251–267, 1997. [50] T. Kurita and N. Otsu, Texture classification by higher order local autocorrelation features, Proceedings of ACCV93, Asian Conference on Computer Vision, Osaka, pp. 175–178, 1993. [51] S.T. Kyvelidis, L. Lykouropoulos and N. Kouloumbi, Digital system for detecting, classifying, and fast retrieving corrosion generated defects, Journal of Coatings Technology, vol. 73(915), pp. 67–73, 2001. [52] Y. Liu, T. Zhao and J. Zhang, Learning multispectral texture features for cervical cancer detection, Proceedings of 2002 IEEE International Symposium on Biomedical Imaging: Macro to Nano, pp. 169–172, 2002. [53] G. McGunnigle and M.J. Chantler, Modeling deposition of surface texture, Electronics Letters, vol. 37(12), pp. 749–750, 2001. [54] J. McKenzie, S. Marshall, A.J. Gray and E.R. Dougherty, Morphological texture analysis using the texture evolution function, International Journal of Pattern Recognition and Artificial Intelligence, vol. 17(2), pp. 167–185, 2003. [55] J. McKenzie, Classification of dynamically evolving textures using evolution functions, Ph.D. Thesis, University of Strathclyde, UK, 2004. [56] S.G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(R), Transactions of the American Mathematical Society, vol. 315, pp. 69–87, 1989. [57] S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, pp. 674–693, 1989. [58] B.S. Manjunath and W.Y. Ma, Texture features for browsing and retrieval of image data, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, pp. 837–842, 1996. [59] B.S. Manjunath, G.M. Haley and W.Y. Ma, Multiband techniques for texture classification and segmentation, Handbook of Image and Video Processing, A. Bovik, ed., Academic Press, London, pp. 367–381, 2000. [60] G. Matheron, Random Sets and Integral Geometry, Wiley Series in Probability and Mathematical Statistics, John Wiley and Sons, New York, 1975

    Texture Analysis Methods for Medical Image Characterisation

    Get PDF

    A Review of Wavelet Based Fingerprint Image Retrieval

    Get PDF
    A digital image is composed of pixels and information about brightness of image and RGB triples are used to encode color information. Image retrieval problem encountered when searching and retrieving images that is relevant to a user’s request from a database. In Content based image retrieval, input goes in the form of an image. In these images, different features are extracted and then the other images from database are retrieved accordingly. Biometric distinguishes the people by their physical or behavioral qualities. Fingerprints are viewed as a standout amongst the most solid for human distinguishment because of their uniqueness and ingenuity. To retrieve fingerprint images on the basis of their textural features,by using different wavelets. From the input fingerprint image, first of all center point area is selected and then its textural features are extracted and stored in database. When a query image comes then again its center point is selected and then its texture feature are extracted. Then these features are matched for similarity and then resultant image is displayed. DOI: 10.17762/ijritcc2321-8169.15026

    Giving eyes to ICT!, or How does a computer recognize a cow?

    Get PDF
    Het door Schouten en andere onderzoekers op het CWI ontwikkelde systeem berust op het beschrijven van beelden met behulp van fractale meetkunde. De menselijke waarneming blijkt mede daardoor zo efficiënt omdat zij sterk werkt met gelijkenissen. Het ligt dus voor de hand het te zoeken in wiskundige methoden die dat ook doen. Schouten heeft daarom beeldcodering met behulp van 'fractals' onderzocht. Fractals zijn zelfgelijkende meetkundige figuren, opgebouwd door herhaalde transformatie (iteratie) van een eenvoudig basispatroon, dat zich daardoor op steeds kleinere schalen vertakt. Op elk niveau van detaillering lijkt een fractal op zichzelf (Droste-effect). Met fractals kan men vrij eenvoudig bedrieglijk echte natuurvoorstellingen maken. Fractale beeldcodering gaat ervan uit dat het omgekeerde ook geldt: een beeld effectief opslaan in de vorm van de basispatronen van een klein aantal fractals, samen met het voorschrift hoe het oorspronkelijke beeld daaruit te reconstrueren. Het op het CWI in samenwerking met onderzoekers uit Leuven ontwikkelde systeem is mede gebaseerd op deze methode. ISBN 906196502

    Morphology-based multifractal estimation for texture segmentation

    Get PDF
    Author name used in this publication: (David) Dagan FengCentre for Multimedia Signal Processing, Department of Electronic and Information Engineering2005-2006 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Textural Difference Enhancement based on Image Component Analysis

    Get PDF
    In this thesis, we propose a novel image enhancement method to magnify the textural differences in the images with respect to human visual characteristics. The method is intended to be a preprocessing step to improve the performance of the texture-based image segmentation algorithms. We propose to calculate the six Tamura's texture features (coarseness, contrast, directionality, line-likeness, regularity and roughness) in novel measurements. Each feature follows its original understanding of the certain texture characteristic, but is measured by some local low-level features, e.g., direction of the local edges, dynamic range of the local pixel intensities, kurtosis and skewness of the local image histogram. A discriminant texture feature selection method based on principal component analysis (PCA) is then proposed to find the most representative characteristics in describing textual differences in the image. We decompose the image into pairwise components representing the texture characteristics strongly and weakly, respectively. A set of wavelet-based soft thresholding methods are proposed as the dictionaries of morphological component analysis (MCA) to sparsely highlight the characteristics strongly and weakly from the image. The wavelet-based thresholding methods are proposed in pair, therefore each of the resulted pairwise components can exhibit one certain characteristic either strongly or weakly. We propose various wavelet-based manipulation methods to enhance the components separately. For each component representing a certain texture characteristic, a non-linear function is proposed to manipulate the wavelet coefficients of the component so that the component is enhanced with the corresponding characteristic accentuated independently while having little effect on other characteristics. Furthermore, the above three methods are combined into a uniform framework of image enhancement. Firstly, the texture characteristics differentiating different textures in the image are found. Secondly, the image is decomposed into components exhibiting these texture characteristics respectively. Thirdly, each component is manipulated to accentuate the corresponding texture characteristics exhibited there. After re-combining these manipulated components, the image is enhanced with the textural differences magnified with respect to the selected texture characteristics. The proposed textural differences enhancement method is used prior to both grayscale and colour image segmentation algorithms. The convincing results of improving the performance of different segmentation algorithms prove the potential of the proposed textural difference enhancement method
    corecore