282 research outputs found

    Beltrami Representation and its applications to texture map and video compression

    Full text link
    Surface parameterizations and registrations are important in computer graphics and imaging, where 1-1 correspondences between meshes are computed. In practice, surface maps are usually represented and stored as 3D coordinates each vertex is mapped to, which often requires lots of storage memory. This causes inconvenience in data transmission and data storage. To tackle this problem, we propose an effective algorithm for compressing surface homeomorphisms using Fourier approximation of the Beltrami representation. The Beltrami representation is a complex-valued function defined on triangular faces of the surface mesh with supreme norm strictly less than 1. Under suitable normalization, there is a 1-1 correspondence between the set of surface homeomorphisms and the set of Beltrami representations. Hence, every bijective surface map is associated with a unique Beltrami representation. Conversely, given a Beltrami representation, the corresponding bijective surface map can be exactly reconstructed using the Linear Beltrami Solver introduced in this paper. Using the Beltrami representation, the surface homeomorphism can be easily compressed by Fourier approximation, without distorting the bijectivity of the map. The storage memory can be effectively reduced, which is useful for many practical problems in computer graphics and imaging. In this paper, we proposed to apply the algorithm to texture map compression and video compression. With our proposed algorithm, the storage requirement for the texture properties of a textured surface can be significantly reduced. Our algorithm can further be applied to compressing motion vector fields for video compression, which effectively improve the compression ratio.Comment: 30 pages, 23 figure

    Teichm\"uller extremal mapping and its applications to landmark matching registration

    Full text link
    Registration, which aims to find an optimal 1-1 correspondence between shapes, is an important process in different research areas. Conformal mappings have been widely used to obtain a diffeomorphism between shapes that minimizes angular distortion. Conformal registrations are beneficial since it preserves the local geometry well. However, when landmark constraints are enforced, conformal mappings generally do not exist. This motivates us to look for a unique landmark matching quasi-conformal registration, which minimizes the conformality distortion. Under suitable condition on the landmark constraints, a unique diffeomporphism, called the Teichm\"uller extremal mapping between two surfaces can be obtained, which minimizes the maximal conformality distortion. In this paper, we propose an efficient iterative algorithm, called the Quasi-conformal (QC) iterations, to compute the Teichm\"uller mapping. The basic idea is to represent the set of diffeomorphisms using Beltrami coefficients (BCs), and look for an optimal BC associated to the desired Teichm\"uller mapping. The associated diffeomorphism can be efficiently reconstructed from the optimal BC using the Linear Beltrami Solver(LBS). Using BCs to represent diffeomorphisms guarantees the diffeomorphic property of the registration. Using our proposed method, the Teichm\"uller mapping can be accurately and efficiently computed within 10 seconds. The obtained registration is guaranteed to be bijective. The proposed algorithm can also be extended to compute Teichm\"uller mapping with soft landmark constraints. We applied the proposed algorithm to real applications, such as brain landmark matching registration, constrained texture mapping and human face registration. Experimental results shows that our method is both effective and efficient in computing a non-overlap landmark matching registration with least amount of conformality distortion.Comment: 26 pages, 21 figure

    Image retargeting via Beltrami representation

    Full text link
    Image retargeting aims to resize an image to one with a prescribed aspect ratio. Simple scaling inevitably introduces unnatural geometric distortions on the important content of the image. In this paper, we propose a simple and yet effective method to resize an image, which preserves the geometry of the important content, using the Beltrami representation. Our algorithm allows users to interactively label content regions as well as line structures. Image resizing can then be achieved by warping the image by an orientation-preserving bijective warping map with controlled distortion. The warping map is represented by its Beltrami representation, which captures the local geometric distortion of the map. By carefully prescribing the values of the Beltrami representation, images with different complexity can be effectively resized. Our method does not require solving any optimization problems and tuning parameters throughout the process. This results in a simple and efficient algorithm to solve the image retargeting problem. Extensive experiments have been carried out, which demonstrate the efficacy of our proposed method.Comment: 13pages, 13 figure

    QCMC: Quasi-conformal Parameterizations for Multiply-connected domains

    Full text link
    This paper presents a method to compute the {\it quasi-conformal parameterization} (QCMC) for a multiply-connected 2D domain or surface. QCMC computes a quasi-conformal map from a multiply-connected domain SS onto a punctured disk DSD_S associated with a given Beltrami differential. The Beltrami differential, which measures the conformality distortion, is a complex-valued function μ:SC\mu:S\to\mathbb{C} with supremum norm strictly less than 1. Every Beltrami differential gives a conformal structure of SS. Hence, the conformal module of DSD_S, which are the radii and centers of the inner circles, can be fully determined by μ\mu, up to a M\"obius transformation. In this paper, we propose an iterative algorithm to simultaneously search for the conformal module and the optimal quasi-conformal parameterization. The key idea is to minimize the Beltrami energy subject to the boundary constraints. The optimal solution is our desired quasi-conformal parameterization onto a punctured disk. The parameterization of the multiply-connected domain simplifies numerical computations and has important applications in various fields, such as in computer graphics and vision. Experiments have been carried out on synthetic data together with real multiply-connected Riemann surfaces. Results show that our proposed method can efficiently compute quasi-conformal parameterizations of multiply-connected domains and outperforms other state-of-the-art algorithms. Applications of the proposed parameterization technique have also been explored.Comment: 26 pages, 23 figures, submitted. arXiv admin note: text overlap with arXiv:1402.6908, arXiv:1307.2679 by other author

    A Conformal Approach for Surface Inpainting

    Full text link
    We address the problem of surface inpainting, which aims to fill in holes or missing regions on a Riemann surface based on its surface geometry. In practical situation, surfaces obtained from range scanners often have holes where the 3D models are incomplete. In order to analyze the 3D shapes effectively, restoring the incomplete shape by filling in the surface holes is necessary. In this paper, we propose a novel conformal approach to inpaint surface holes on a Riemann surface based on its surface geometry. The basic idea is to represent the Riemann surface using its conformal factor and mean curvature. According to Riemann surface theory, a Riemann surface can be uniquely determined by its conformal factor and mean curvature up to a rigid motion. Given a Riemann surface SS, its mean curvature HH and conformal factor λ\lambda can be computed easily through its conformal parameterization. Conversely, given λ\lambda and HH, a Riemann surface can be uniquely reconstructed by solving the Gauss-Codazzi equation on the conformal parameter domain. Hence, the conformal factor and the mean curvature are two geometric quantities fully describing the surface. With this λ\lambda-HH representation of the surface, the problem of surface inpainting can be reduced to the problem of image inpainting of λ\lambda and HH on the conformal parameter domain. Once λ\lambda and HH are inpainted, a Riemann surface can be reconstructed which effectively restores the 3D surface with missing holes. Since the inpainting model is based on the geometric quantities λ\lambda and HH, the restored surface follows the surface geometric pattern. We test the proposed algorithm on synthetic data as well as real surface data. Experimental results show that our proposed method is an effective surface inpainting algorithm to fill in surface holes on an incomplete 3D models based their surface geometry.Comment: 19 pages, 12 figure

    Restoration of Atmospheric Turbulence-distorted Images via RPCA and Quasiconformal Maps

    Full text link
    We address the problem of restoring a high-quality image from an observed image sequence strongly distorted by atmospheric turbulence. A novel algorithm is proposed in this paper to reduce geometric distortion as well as space-and-time-varying blur due to strong turbulence. By considering a suitable energy functional, our algorithm first obtains a sharp reference image and a subsampled image sequence containing sharp and mildly distorted image frames with respect to the reference image. The subsampled image sequence is then stabilized by applying the Robust Principal Component Analysis (RPCA) on the deformation fields between image frames and warping the image frames by a quasiconformal map associated with the low-rank part of the deformation matrix. After image frames are registered to the reference image, the low-rank part of them are deblurred via a blind deconvolution, and the deblurred frames are then fused with the enhanced sparse part. Experiments have been carried out on both synthetic and real turbulence-distorted video. Results demonstrate that our method is effective in alleviating distortions and blur, restoring image details and enhancing visual quality.Comment: 21 pages, 24 figure

    Conformal Surface Morphing with Applications on Facial Expressions

    Full text link
    Morphing is the process of changing one figure into another. Some numerical methods of 3D surface morphing by deformable modeling and conformal mapping are shown in this study. It is well known that there exists a unique Riemann conformal mapping from a simply connected surface into a unit disk by the Riemann mapping theorem. The dilation and relative orientations of the 3D surfaces can be linked through the M\"obius transformation due to the conformal characteristic of the Riemann mapping. On the other hand, a 3D surface deformable model can be built via various approaches such as mutual parameterization from direct interpolation or surface matching using landmarks. In this paper, we take the advantage of the unique representation of 3D surfaces by the mean curvatures and the conformal factors associated with the Riemann mapping. By registering the landmarks on the conformal parametric domains, the correspondence of the mean curvatures and the conformal factors for each surfaces can be obtained. As a result, we can construct the 3D deformation field from the surface reconstruction algorithm proposed by Gu and Yau. Furthermore, by composition of the M\"obius transformation and the 3D deformation field, the morphing sequence can be generated from the mean curvatures and the conformal factors on a unified mesh structure by using the cubic spline homotopy. Several numerical experiments of the face morphing are presented to demonstrate the robustness of our approach.Comment: 8 pages, 13 figure

    Efficient Feature-based Image Registration by Mapping Sparsified Surfaces

    Full text link
    With the advancement in the digital camera technology, the use of high resolution images and videos has been widespread in the modern society. In particular, image and video frame registration is frequently applied in computer graphics and film production. However, conventional registration approaches usually require long computational time for high resolution images and video frames. This hinders the application of the registration approaches in the modern industries. In this work, we first propose a new image representation method to accelerate the registration process by triangulating the images effectively. For each high resolution image or video frame, we compute an optimal coarse triangulation which captures the important features of the image. Then, we apply a surface registration algorithm to obtain a registration map which is used to compute the registration of the high resolution image. Experimental results suggest that our overall algorithm is efficient and capable to achieve a high compression rate while the accuracy of the registration is well retained when compared with the conventional grid-based approach. Also, the computational time of the registration is significantly reduced using our triangulation-based approach

    The Theory of Computational Quasi-conformal Geometry on Point Clouds

    Full text link
    Quasi-conformal (QC) theory is an important topic in complex analysis, which studies geometric patterns of deformations between shapes. Recently, computational QC geometry has been developed and has made significant contributions to medical imaging, computer graphics and computer vision. Existing computational QC theories and algorithms have been built on triangulation structures. In practical situations, many 3D acquisition techniques often produce 3D point cloud (PC) data of the object, which does not contain connectivity information. It calls for a need to develop computational QC theories on PCs. In this paper, we introduce the concept of computational QC geometry on PCs. We define PC quasi-conformal (PCQC) maps and their associated PC Beltrami coefficients (PCBCs). The PCBC is analogous to the Beltrami differential in the continuous setting. Theoretically, we show that the PCBC converges to its continuous counterpart as the density of the PC tends to zero. We also theoretically and numerically validate the ability of PCBCs to measure local geometric distortions of PC deformations. With these concepts, many existing QC based algorithms for geometry processing and shape analysis can be easily extended to PC data

    Fast Disk Conformal Parameterization of Simply-connected Open Surfaces

    Full text link
    Surface parameterizations have been widely used in computer graphics and geometry processing. In particular, as simply-connected open surfaces are conformally equivalent to the unit disk, it is desirable to compute the disk conformal parameterizations of the surfaces. In this paper, we propose a novel algorithm for the conformal parameterization of a simply-connected open surface onto the unit disk, which significantly speeds up the computation, enhances the conformality and stability, and guarantees the bijectivity. The conformality distortions at the inner region and on the boundary are corrected by two steps, with the aid of an iterative scheme using quasi-conformal theories. Experimental results demonstrate the effectiveness of our proposed method
    corecore