1,072 research outputs found

    ant-CBIR: a new method for radial furrow extraction in iris biometric

    Get PDF
    Iris recognition has evolved from first to second generation of biometric systems which capable of recognizing unique iris features such as crypts, collarette and pigment blotches. However, there are still ongoing researches on finding the best way to search unique iris features since iris image contains high noise. The high noise iris images (noisy iris); usually give the biometric systems to deliver erroneous results, leading to categorizations where the actual user is labeled as an impostor. Therefore, this study focuses on a novel method, targeted at overcoming the aforementioned challenge. We present the use of ant colony based image retrieval (ant–CBIR) technique as a successful method in recognizing the radial furrow in noisy iris. This method simulates the behavior of artificial ants, searching for pixel values of radial furrow based on an optimum pixel range. The evaluation of accuracy performance with and without the ant-CBIR application is measured using GAR parameter on UBIRIS.v1. Results show that the GAR is 79.9% with ant-CBIR implementation. The implication of this study contributes to a new feature extraction that has the ability of human-aided computing. Moreover, ant-CBIR helps to provide cost effective, easy maintenance and exploration of a long term data collection

    ant-CBIR: a new method for radial furrow extraction in iris biometric

    Get PDF
    Iris recognition has evolved from first to second generation of biometric systems which capable of recognizing unique iris features such as crypts, collarette and pigment blotches. However, there are still ongoing researches on finding the best way to search unique iris features since iris image contains high noise. The high noise iris images (noisy iris); usually give the biometric systems to deliver erroneous results, leading to categorizations where the actual user is labeled as an impostor. Therefore, this study focuses on a novel method, targeted at overcoming the aforementioned challenge. We present the use of ant colony based image retrieval (ant–CBIR) technique as a successful method in recognizing the radial furrow in noisy iris. This method simulates the behavior of artificial ants, searching for pixel values of radial furrow based on an optimum pixel range. The evaluation of accuracy performance with and without the ant-CBIR application is measured using GAR parameter on UBIRIS.v1. Results show that the GAR is 79.9% with ant-CBIR implementation. The implication of this study contributes to a new feature extraction that has the ability of human-aided computing. Moreover, ant-CBIR helps to provide cost effective, easy maintenance and exploration of a long term data collection

    Optimum Feature Selection for Recognizing Objects from Satellite Imagery Using Genetic Algorithm

    Get PDF
    Object recognition is a research area that aims to associate objects to categories or classes. Usually recognition of object specific geospatial features, as building, tree, mountains, roads, and rivers from high-resolution satellite imagery is a time consuming and expensive problem in the maintenance cycle of a Geographic Information System (GIS). Feature selection is the task of selecting a small subset from original features that can achieve maximum classification accuracy and reduce data dimensionality. This subset of features has some very important benefits like, it reduces computational complexity of learning algorithms, saves time, improve accuracy and the selected features can be insightful for the people involved in problem domain. This makes feature selection as an indispensable task in classification task. In our work, we propose wrapper approach based on Genetic Algorithm (GA) as an optimization algorithm to search the space of all possible subsets related to object geospatial features set for the purpose of recognition. GA is wrapped with three different classifier algorithms namely neural network, k-nearest neighbor and decision tree J48 as subset evaluating mechanism. The GA-ANN, GA-KNN and GA-J48 methods are implemented using the WEKA software on dataset that contains 38 extracted features from satellite images using ENVI software. The proposed wrapper approach incorporated the Correlation Ranking Filter (CRF) for spatial features to remove unimportant features. Results suggest that GA based neural classifiers and using CRF for spatial features are robust and effective in finding optimal subsets of features from large data sets

    Shape localization, quantification and correspondence using Region Matching Algorithm

    Get PDF
    We propose a method for local, region-based matching of planar shapes, especially as those shapes that change over time. This is a problem fundamental to medical imaging, specifically the comparison over time of mammograms. The method is based on the non-emergence and non-enhancement of maxima, as well as the causality principle of integral invariant scale space. The core idea of our Region Matching Algorithm (RMA) is to divide a shape into a number of “salient” regions and then to compare all such regions for local similarity in order to quantitatively identify new growths or partial/complete occlusions. The algorithm has several advantages over commonly used methods for shape comparison of segmented regions. First, it provides improved key-point alignment for optimal shape correspondence. Second, it identifies localized changes such as new growths as well as complete/partial occlusion in corresponding regions by dividing the segmented region into sub-regions based upon the extrema that persist over a sufficient range of scales. Third, the algorithm does not depend upon the spatial locations of mammographic features and eliminates the need for registration to identify salient changes over time. Finally, the algorithm is fast to compute and requires no human intervention. We apply the method to temporal pairs of mammograms in order to detect potentially important differences between them

    Multi-layer Architecture For Storing Visual Data Based on WCF and Microsoft SQL Server Database

    Full text link
    In this paper we present a novel architecture for storing visual data. Effective storing, browsing and searching collections of images is one of the most important challenges of computer science. The design of architecture for storing such data requires a set of tools and frameworks such as SQL database management systems and service-oriented frameworks. The proposed solution is based on a multi-layer architecture, which allows to replace any component without recompilation of other components. The approach contains five components, i.e. Model, Base Engine, Concrete Engine, CBIR service and Presentation. They were based on two well-known design patterns: Dependency Injection and Inverse of Control. For experimental purposes we implemented the SURF local interest point detector as a feature extractor and KK-means clustering as indexer. The presented architecture is intended for content-based retrieval systems simulation purposes as well as for real-world CBIR tasks.Comment: Accepted for the 14th International Conference on Artificial Intelligence and Soft Computing, ICAISC, June 14-18, 2015, Zakopane, Polan

    A Review and Performance Analysis of Image Edge Detection Algorithms

    Get PDF
    Edge detection is the fundamental operation of digital image processing and applied in many fields like industrial, medical, satellite, agriculture etc. According to this growth of edge detection applications, many researchers and scholars are interested to develop the edge detection algorithm by using various techniques. This paper illustrates the review for what are the novel techniques are used for the edge detection, which operators are mostly used by them and how they get the accurate results to compare with existing methods. It also discussing the performance analysis of most commonly used edge detection operators such as Canny, Laplacian Gaussian (LoG), Sobel, Prewitt and Roberts,. Finally the accuracy, PSNR (Peak Signal to Noise Ratio) and execution time are tabulated and realize the most precious and fast computed edge detection method is uncovered

    Swarm Intelligence and Image Segmentation

    Get PDF
    corecore