375,665 research outputs found

    Generative Adversarial Text to Image Synthesis

    Full text link
    Automatic synthesis of realistic images from text would be interesting and useful, but current AI systems are still far from this goal. However, in recent years generic and powerful recurrent neural network architectures have been developed to learn discriminative text feature representations. Meanwhile, deep convolutional generative adversarial networks (GANs) have begun to generate highly compelling images of specific categories, such as faces, album covers, and room interiors. In this work, we develop a novel deep architecture and GAN formulation to effectively bridge these advances in text and image model- ing, translating visual concepts from characters to pixels. We demonstrate the capability of our model to generate plausible images of birds and flowers from detailed text descriptions.Comment: ICML 201

    Generating Counterfactual Explanations with Natural Language

    Full text link
    Natural language explanations of deep neural network decisions provide an intuitive way for a AI agent to articulate a reasoning process. Current textual explanations learn to discuss class discriminative features in an image. However, it is also helpful to understand which attributes might change a classification decision if present in an image (e.g., "This is not a Scarlet Tanager because it does not have black wings.") We call such textual explanations counterfactual explanations, and propose an intuitive method to generate counterfactual explanations by inspecting which evidence in an input is missing, but might contribute to a different classification decision if present in the image. To demonstrate our method we consider a fine-grained image classification task in which we take as input an image and a counterfactual class and output text which explains why the image does not belong to a counterfactual class. We then analyze our generated counterfactual explanations both qualitatively and quantitatively using proposed automatic metrics.Comment: presented at 2018 ICML Workshop on Human Interpretability in Machine Learning (WHI 2018), Stockholm, Swede
    corecore