375,665 research outputs found
Generative Adversarial Text to Image Synthesis
Automatic synthesis of realistic images from text would be interesting and
useful, but current AI systems are still far from this goal. However, in recent
years generic and powerful recurrent neural network architectures have been
developed to learn discriminative text feature representations. Meanwhile, deep
convolutional generative adversarial networks (GANs) have begun to generate
highly compelling images of specific categories, such as faces, album covers,
and room interiors. In this work, we develop a novel deep architecture and GAN
formulation to effectively bridge these advances in text and image model- ing,
translating visual concepts from characters to pixels. We demonstrate the
capability of our model to generate plausible images of birds and flowers from
detailed text descriptions.Comment: ICML 201
Generating Counterfactual Explanations with Natural Language
Natural language explanations of deep neural network decisions provide an
intuitive way for a AI agent to articulate a reasoning process. Current textual
explanations learn to discuss class discriminative features in an image.
However, it is also helpful to understand which attributes might change a
classification decision if present in an image (e.g., "This is not a Scarlet
Tanager because it does not have black wings.") We call such textual
explanations counterfactual explanations, and propose an intuitive method to
generate counterfactual explanations by inspecting which evidence in an input
is missing, but might contribute to a different classification decision if
present in the image. To demonstrate our method we consider a fine-grained
image classification task in which we take as input an image and a
counterfactual class and output text which explains why the image does not
belong to a counterfactual class. We then analyze our generated counterfactual
explanations both qualitatively and quantitatively using proposed automatic
metrics.Comment: presented at 2018 ICML Workshop on Human Interpretability in Machine
Learning (WHI 2018), Stockholm, Swede
- …
