481 research outputs found

    AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

    Full text link
    In this paper, we propose an Attentional Generative Adversarial Network (AttnGAN) that allows attention-driven, multi-stage refinement for fine-grained text-to-image generation. With a novel attentional generative network, the AttnGAN can synthesize fine-grained details at different subregions of the image by paying attentions to the relevant words in the natural language description. In addition, a deep attentional multimodal similarity model is proposed to compute a fine-grained image-text matching loss for training the generator. The proposed AttnGAN significantly outperforms the previous state of the art, boosting the best reported inception score by 14.14% on the CUB dataset and 170.25% on the more challenging COCO dataset. A detailed analysis is also performed by visualizing the attention layers of the AttnGAN. It for the first time shows that the layered attentional GAN is able to automatically select the condition at the word level for generating different parts of the image

    A Simple and Effective Baseline for Attentional Generative Adversarial Networks

    Full text link
    Synthesising a text-to-image model of high-quality images by guiding the generative model through the Text description is an innovative and challenging task. In recent years, AttnGAN based on the Attention mechanism to guide GAN training has been proposed, SD-GAN, which adopts a self-distillation technique to improve the performance of the generator and the quality of image generation, and Stack-GAN++, which gradually improves the details and quality of the image by stacking multiple generators and discriminators. However, this series of improvements to GAN all have redundancy to a certain extent, which affects the generation performance and complexity to a certain extent. We use the popular simple and effective idea (1) to remove redundancy structure and improve the backbone network of AttnGAN. (2) to integrate and reconstruct multiple losses of DAMSM. Our improvements have significantly improved the model size and training efficiency while ensuring that the model's performance is unchanged and finally proposed our \textbf{SEAttnGAN}. Code is avalilable at https://github.com/jmyissb/SEAttnGAN.Comment: 12 pages, 3 figure
    • …
    corecore