419,263 research outputs found

    Creative professional users musical relevance criteria

    Get PDF
    Although known item searching for music can be dealt with by searching metadata using existing text search techniques, human subjectivity and variability within the music itself make it very difficult to search for unknown items. This paper examines these problems within the context of text retrieval and music information retrieval. The focus is on ascertaining a relationship between music relevance criteria and those relating to relevance judgements in text retrieval. A data-rich collection of relevance judgements by creative professionals searching for unknown musical items to accompany moving images using real world queries is analysed. The participants in our observations are found to take a socio-cognitive approach and use a range of content and context based criteria. These criteria correlate strongly with those arising from previous text retrieval studies despite the many differences between music and text in their actual content

    Dublin City University at CLEF 2005: Experiments with the ImageCLEF St Andrew’s collection

    Get PDF
    The aim of the Dublin City University participation in the CLEF 2005 ImageCLEF St Andrew’s Collection task was to explore an alternative approach to exploiting text annotation and content-based retrieval in a novel combined way for pseudo relevance feedback (PRF). This method combines evidence from retrieved lists generated using text and content-based retrieval to determine which documents will be assumed relevant for the PRF process. Unfortunately the results show that while standard textbased PRF improves upon a no feedback text baseline, at present our new approach to combining evidence from text and content-based retrieval does not give further improve improvement

    Variational recurrent sequence-to-sequence retrieval for stepwise illustration

    Get PDF
    We address and formalise the task of sequence-to-sequence (seq2seq) cross-modal retrieval. Given a sequence of text passages as query, the goal is to retrieve a sequence of images that best describes and aligns with the query. This new task extends the traditional cross-modal retrieval, where each image-text pair is treated independently ignoring broader context. We propose a novel variational recurrent seq2seq (VRSS) retrieval model for this seq2seq task. Unlike most cross-modal methods, we generate an image vector corresponding to the latent topic obtained from combining the text semantics and context. This synthetic image embedding point associated with every text embedding point can then be employed for either image generation or image retrieval as desired. We evaluate the model for the application of stepwise illustration of recipes, where a sequence of relevant images are retrieved to best match the steps described in the text. To this end, we build and release a new Stepwise Recipe dataset for research purposes, containing 10K recipes (sequences of image-text pairs) having a total of 67K image-text pairs. To our knowledge, it is the first publicly available dataset to offer rich semantic descriptions in a focused category such as food or recipes. Our model is shown to outperform several competitive and relevant baselines in the experiments. We also provide qualitative analysis of how semantically meaningful the results produced by our model are through human evaluation and comparison with relevant existing methods

    Know2Look: Commonsense Knowledge for Visual Search

    No full text
    With the rise in popularity of social media, images accompanied by contextual text form a huge section of the web. However, search and retrieval of documents are still largely dependent on solely textual cues. Although visual cues have started to gain focus, the imperfection in object/scene detection do not lead to significantly improved results. We hypothesize that the use of background commonsense knowledge on query terms can significantly aid in retrieval of documents with associated images. To this end we deploy three different modalities - text, visual cues, and commonsense knowledge pertaining to the query - as a recipe for efficient search and retrieval

    TRECVID 2004 experiments in Dublin City University

    Get PDF
    In this paper, we describe our experiments for TRECVID 2004 for the Search task. In the interactive search task, we developed two versions of a video search/browse system based on the Físchlár Digital Video System: one with text- and image-based searching (System A); the other with only image (System B). These two systems produced eight interactive runs. In addition we submitted ten fully automatic supplemental runs and two manual runs. A.1, Submitted Runs: • DCUTREC13a_{1,3,5,7} for System A, four interactive runs based on text and image evidence. • DCUTREC13b_{2,4,6,8} for System B, also four interactive runs based on image evidence alone. • DCUTV2004_9, a manual run based on filtering faces from an underlying text search engine for certain queries. • DCUTV2004_10, a manual run based on manually generated queries processed automatically. • DCU_AUTOLM{1,2,3,4,5,6,7}, seven fully automatic runs based on language models operating over ASR text transcripts and visual features. • DCUauto_{01,02,03}, three fully automatic runs based on exploring the benefits of multiple sources of text evidence and automatic query expansion. A.2, In the interactive experiment it was confirmed that text and image based retrieval outperforms an image-only system. In the fully automatic runs, DCUauto_{01,02,03}, it was found that integrating ASR, CC and OCR text into the text ranking outperforms using ASR text alone. Furthermore, applying automatic query expansion to the initial results of ASR, CC, OCR text further increases performance (MAP), though not at high rank positions. For the language model-based fully automatic runs, DCU_AUTOLM{1,2,3,4,5,6,7}, we found that interpolated language models perform marginally better than other tested language models and that combining image and textual (ASR) evidence was found to marginally increase performance (MAP) over textual models alone. For our two manual runs we found that employing a face filter disimproved MAP when compared to employing textual evidence alone and that manually generated textual queries improved MAP over fully automatic runs, though the improvement was marginal. A.3, Our conclusions from our fully automatic text based runs suggest that integrating ASR, CC and OCR text into the retrieval mechanism boost retrieval performance over ASR alone. In addition, a text-only Language Modelling approach such as DCU_AUTOLM1 will outperform our best conventional text search system. From our interactive runs we conclude that textual evidence is an important lever for locating relevant content quickly, but that image evidence, if used by experienced users can aid retrieval performance. A.4, We learned that incorporating multiple text sources improves over ASR alone and that an LM approach which integrates shot text, neighbouring shots and entire video contents provides even better retrieval performance. These findings will influence how we integrate textual evidence into future Video IR systems. It was also found that a system based on image evidence alone can perform reasonably and given good query images can aid retrieval performance

    Combining textual and visual information processing for interactive video retrieval: SCHEMA's participation in TRECVID 2004

    Get PDF
    In this paper, the two different applications based on the Schema Reference System that were developed by the SCHEMA NoE for participation to the search task of TRECVID 2004 are illustrated. The first application, named ”Schema-Text”, is an interactive retrieval application that employs only textual information while the second one, named ”Schema-XM”, is an extension of the former, employing algorithms and methods for combining textual, visual and higher level information. Two runs for each application were submitted, I A 2 SCHEMA-Text 3, I A 2 SCHEMA-Text 4 for Schema-Text and I A 2 SCHEMA-XM 1, I A 2 SCHEMA-XM 2 for Schema-XM. The comparison of these two applications in terms of retrieval efficiency revealed that the combination of information from different data sources can provide higher efficiency for retrieval systems. Experimental testing additionally revealed that initially performing a text-based query and subsequently proceeding with visual similarity search using one of the returned relevant keyframes as an example image is a good scheme for combining visual and textual information
    corecore