164,166 research outputs found
Universal Compressed Text Indexing
The rise of repetitive datasets has lately generated a lot of interest in
compressed self-indexes based on dictionary compression, a rich and
heterogeneous family that exploits text repetitions in different ways. For each
such compression scheme, several different indexing solutions have been
proposed in the last two decades. To date, the fastest indexes for repetitive
texts are based on the run-length compressed Burrows-Wheeler transform and on
the Compact Directed Acyclic Word Graph. The most space-efficient indexes, on
the other hand, are based on the Lempel-Ziv parsing and on grammar compression.
Indexes for more universal schemes such as collage systems and macro schemes
have not yet been proposed. Very recently, Kempa and Prezza [STOC 2018] showed
that all dictionary compressors can be interpreted as approximation algorithms
for the smallest string attractor, that is, a set of text positions capturing
all distinct substrings. Starting from this observation, in this paper we
develop the first universal compressed self-index, that is, the first indexing
data structure based on string attractors, which can therefore be built on top
of any dictionary-compressed text representation. Let be the size of a
string attractor for a text of length . Our index takes
words of space and supports locating the
occurrences of any pattern of length in
time, for any constant . This is, in particular, the first index
for general macro schemes and collage systems. Our result shows that the
relation between indexing and compression is much deeper than what was
previously thought: the simple property standing at the core of all dictionary
compressors is sufficient to support fast indexed queries.Comment: Fixed with reviewer's comment
Spatio-textual indexing for geographical search on the web
Many web documents refer to specific geographic localities and many
people include geographic context in queries to web search engines. Standard
web search engines treat the geographical terms in the same way as other terms.
This can result in failure to find relevant documents that refer to the place of
interest using alternative related names, such as those of included or nearby
places. This can be overcome by associating text indexing with spatial indexing
methods that exploit geo-tagging procedures to categorise documents with
respect to geographic space. We describe three methods for spatio-textual
indexing based on multiple spatially indexed text indexes, attaching spatial
indexes to the document occurrences of a text index, and merging text index
access results with results of access to a spatial index of documents. These
schemes are compared experimentally with a conventional text index search
engine, using a collection of geo-tagged web documents, and are shown to be
able to compete in speed and storage performance with pure text indexing
Context and Keyword Extraction in Plain Text Using a Graph Representation
Document indexation is an essential task achieved by archivists or automatic
indexing tools. To retrieve relevant documents to a query, keywords describing
this document have to be carefully chosen. Archivists have to find out the
right topic of a document before starting to extract the keywords. For an
archivist indexing specialized documents, experience plays an important role.
But indexing documents on different topics is much harder. This article
proposes an innovative method for an indexing support system. This system takes
as input an ontology and a plain text document and provides as output
contextualized keywords of the document. The method has been evaluated by
exploiting Wikipedia's category links as a termino-ontological resources
Intelligent indexing of crime scene photographs
The Scene of Crime Information System's automatic image-indexing prototype goes beyond extracting keywords and syntactic relations from captions. The semantic information it gathers gives investigators an intuitive, accurate way to search a database of cases for specific photographic evidence. Intelligent, automatic indexing and retrieval of crime scene photographs is one of the main functions of SOCIS, our research prototype developed within the Scene of Crime Information System project. The prototype, now in its final development and evaluation phase, applies advanced natural language processing techniques to text-based image indexing and retrieval to tackle crime investigation needs effectively and efficiently
Extracting Information-rich Part of Texts using Text Denoising
The aim of this paper is to report on a novel text reduction technique,
called Text Denoising, that highlights information-rich content when processing
a large volume of text data, especially from the biomedical domain. The core
feature of the technique, the text readability index, embodies the hypothesis
that complex text is more information-rich than the rest. When applied on tasks
like biomedical relation bearing text extraction, keyphrase indexing and
extracting sentences describing protein interactions, it is evident that the
reduced set of text produced by text denoising is more information-rich than
the rest.Comment: 26th Canadian Conference on Artificial Intelligence (CAI-2013),
Regina, Canada, May 29-31, 201
- …
