9,312 research outputs found

    Prior-RadGraphFormer: A Prior-Knowledge-Enhanced Transformer for Generating Radiology Graphs from X-Rays

    Full text link
    The extraction of structured clinical information from free-text radiology reports in the form of radiology graphs has been demonstrated to be a valuable approach for evaluating the clinical correctness of report-generation methods. However, the direct generation of radiology graphs from chest X-ray (CXR) images has not been attempted. To address this gap, we propose a novel approach called Prior-RadGraphFormer that utilizes a transformer model with prior knowledge in the form of a probabilistic knowledge graph (PKG) to generate radiology graphs directly from CXR images. The PKG models the statistical relationship between radiology entities, including anatomical structures and medical observations. This additional contextual information enhances the accuracy of entity and relation extraction. The generated radiology graphs can be applied to various downstream tasks, such as free-text or structured reports generation and multi-label classification of pathologies. Our approach represents a promising method for generating radiology graphs directly from CXR images, and has significant potential for improving medical image analysis and clinical decision-making.Comment: In GRAIL @ MICCAI 202

    A survey on knowledge-enhanced multimodal learning

    Full text link
    Multimodal learning has been a field of increasing interest, aiming to combine various modalities in a single joint representation. Especially in the area of visiolinguistic (VL) learning multiple models and techniques have been developed, targeting a variety of tasks that involve images and text. VL models have reached unprecedented performances by extending the idea of Transformers, so that both modalities can learn from each other. Massive pre-training procedures enable VL models to acquire a certain level of real-world understanding, although many gaps can be identified: the limited comprehension of commonsense, factual, temporal and other everyday knowledge aspects questions the extendability of VL tasks. Knowledge graphs and other knowledge sources can fill those gaps by explicitly providing missing information, unlocking novel capabilities of VL models. In the same time, knowledge graphs enhance explainability, fairness and validity of decision making, issues of outermost importance for such complex implementations. The current survey aims to unify the fields of VL representation learning and knowledge graphs, and provides a taxonomy and analysis of knowledge-enhanced VL models

    Graph Meets LLMs: Towards Large Graph Models

    Full text link
    Large models have emerged as the most recent groundbreaking achievements in artificial intelligence, and particularly machine learning. However, when it comes to graphs, large models have not achieved the same level of success as in other fields, such as natural language processing and computer vision. In order to promote applying large models for graphs forward, we present a perspective paper to discuss the challenges and opportunities associated with developing large graph models. First, we discuss the desired characteristics of large graph models. Then, we present detailed discussions from three key perspectives: representation basis, graph data, and graph models. In each category, we provide a brief overview of recent advances and highlight the remaining challenges together with our visions. Finally, we discuss valuable applications of large graph models. We believe this perspective can encourage further investigations into large graph models, ultimately pushing us one step closer towards artificial general intelligence (AGI). We are the first to comprehensively study large graph models, to the best of our knowledge.Comment: Accepted by NeurIPS 2023 New Frontiers in Graph Learning Workshop. Comments are welcom
    • …
    corecore