1,731,811 research outputs found
Conditional Image-Text Embedding Networks
This paper presents an approach for grounding phrases in images which jointly
learns multiple text-conditioned embeddings in a single end-to-end model. In
order to differentiate text phrases into semantically distinct subspaces, we
propose a concept weight branch that automatically assigns phrases to
embeddings, whereas prior works predefine such assignments. Our proposed
solution simplifies the representation requirements for individual embeddings
and allows the underrepresented concepts to take advantage of the shared
representations before feeding them into concept-specific layers. Comprehensive
experiments verify the effectiveness of our approach across three phrase
grounding datasets, Flickr30K Entities, ReferIt Game, and Visual Genome, where
we obtain a (resp.) 4%, 3%, and 4% improvement in grounding performance over a
strong region-phrase embedding baseline.Comment: ECCV 2018 accepted pape
Semantically Invariant Text-to-Image Generation
Image captioning has demonstrated models that are capable of generating
plausible text given input images or videos. Further, recent work in image
generation has shown significant improvements in image quality when text is
used as a prior. Our work ties these concepts together by creating an
architecture that can enable bidirectional generation of images and text. We
call this network Multi-Modal Vector Representation (MMVR). Along with MMVR, we
propose two improvements to the text conditioned image generation. Firstly, a
n-gram metric based cost function is introduced that generalizes the caption
with respect to the image. Secondly, multiple semantically similar sentences
are shown to help in generating better images. Qualitative and quantitative
evaluations demonstrate that MMVR improves upon existing text conditioned image
generation results by over 20%, while integrating visual and text modalities.Comment: 5 papers, 5 figures, Published in 2018 25th IEEE International
Conference on Image Processing (ICIP
TRECVID 2004 experiments in Dublin City University
In this paper, we describe our experiments for TRECVID 2004 for the Search task. In the interactive search task, we developed two versions of a video search/browse system based on the Físchlár Digital Video System: one with text- and image-based searching (System A); the other with only image (System B). These two systems produced eight interactive runs. In addition we submitted ten fully automatic supplemental runs and two manual runs.
A.1, Submitted Runs:
• DCUTREC13a_{1,3,5,7} for System A, four interactive runs based on text and image evidence.
• DCUTREC13b_{2,4,6,8} for System B, also four interactive runs based on image evidence alone.
• DCUTV2004_9, a manual run based on filtering faces from an underlying text search engine for certain queries.
• DCUTV2004_10, a manual run based on manually generated queries processed automatically.
• DCU_AUTOLM{1,2,3,4,5,6,7}, seven fully automatic runs based on language models operating over ASR text transcripts and visual features.
• DCUauto_{01,02,03}, three fully automatic runs based on exploring the benefits of multiple sources of text evidence and automatic query expansion.
A.2, In the interactive experiment it was confirmed that text and image based retrieval outperforms an image-only system. In the fully automatic runs, DCUauto_{01,02,03}, it was found that integrating ASR, CC and OCR text into the text ranking outperforms using ASR text alone. Furthermore, applying automatic query expansion to the initial results of ASR, CC, OCR text further increases performance (MAP), though not at high rank positions. For the language model-based fully automatic runs, DCU_AUTOLM{1,2,3,4,5,6,7}, we found that interpolated language models perform marginally better than other tested language models and that combining image and textual (ASR) evidence was found to marginally increase performance (MAP) over textual models alone. For our two manual runs we found that employing a face filter disimproved MAP when compared to employing textual evidence alone and that manually generated textual queries improved MAP over fully automatic runs, though the improvement was marginal.
A.3, Our conclusions from our fully automatic text based runs suggest that integrating ASR, CC and OCR text into the retrieval mechanism boost retrieval performance over ASR alone. In addition, a text-only Language Modelling approach such as DCU_AUTOLM1 will outperform our best conventional text search system. From our interactive runs we conclude that textual evidence is an important lever for locating relevant content quickly, but that image evidence, if used by experienced users can aid retrieval performance.
A.4, We learned that incorporating multiple text sources improves over ASR alone and that an LM approach which integrates shot text, neighbouring shots and entire video contents provides even better retrieval performance. These findings will influence how we integrate textual evidence into future Video IR systems. It was also found that a system based on image evidence alone can perform reasonably and given good query images can aid retrieval performance
- …
