62,586 research outputs found

    Testicular endocrine activity is upregulated by D-Aspartic acid in the green frog Rana esculenta

    Get PDF
    This study investigated the involvement of D-aspartic acid (D-Asp) in testicular steroidogenesis of the green frog Rana esculenta and its effect on stimulation of thumb pad morphology and glandular activity, a typical testosterone-dependent secondary sexual characteristic in this amphibian species. In the testis, D-Asp concentrations vary significantly during the reproductive cycle: they are low in pre- and post-reproductive periods, but reach peak levels in the reproductive period (140-236 nmol/g wet tissue). Moreover, the concentrations of D-Asp in the testis through the sexual cycle positively match the testosterone levels in the gonad and the plasma. The racemase activity evaluated during the cycle expresses its peak when D-Asp and testosterone levels are highest, that is, during the reproductive period, confirming the synthesis of D-Asp from L-Asp by an aspartate racemase. Short-term in vivo experiments consisting of a single injection of D-Asp (2.0 micro mol/g body weight) demonstrated that this amino acid accumulates significantly in the testis, and after 3 h its uptake is coupled with a testosterone increase in both testis and plasma. Moreover, within 18 h of amino acid administration, the D-Asp concentration in the testis decreased along with the testosterone titer to prestimulation levels. Other amino acids (L-Asp, D-Glu and L-Glu) used instead of D-Asp were ineffective, confirming that the significant increase in testicular testosterone was a specific feature of this amino acid. In long-term experiments, D-Asp had been administered chronically to frogs caught during the three phases of the reproductive cycle, inducing testosterone increase and 17beta-estradiol decrease in the gonad during the pre- and post-reproductive period, and vice versa during the reproductive period

    Single dose testosterone administration impairs cognitive reflection in men

    Get PDF
    In nonhumans, the sex steroid testosterone regulates reproductive behaviors such as fighting between males and mating. In humans, correlational studies have linked testosterone with aggression and disorders associated with poor impulse control, but the neuropsychological processes at work are poorly understood. Building on a dual-process framework, we propose a mechanism underlying testosterone’s behavioral effects in humans: reduction in cognitive reflection. In the largest study of behavioral effects of testosterone administration to date, 243 men received either testosterone or placebo and took the Cognitive Reflection Test (CRT), which estimates the capacity to override incorrect intuitive judgments with deliberate correct responses. Testosterone administration reduced CRT scores. The effect remained after we controlled for age, mood, math skills, whether participants believed they had received the placebo or testosterone, and the effects of 14 additional hormones, and it held for each of the CRT questions in isolation. Our findings suggest a mechanism underlying testosterone’s diverse effects on humans’ judgments and decision making and provide novel, clear, and testable predictions

    Measurement of Fecal Testosterone Metabolites in Mice: Replacement of Invasive Techniques

    Get PDF
    Testosterone is the main reproductive hormone in male vertebrates and conventional methods to measure testosterone rely on invasive blood sampling procedures. Here, we aimed to establish a non-invasive alternative by assessing testosterone metabolites (TMs) in fecal and urinary samples in mice. We performed a radiometabolism study to determine the effects of daytime and sex on the metabolism and excretion pattern of radiolabeled TMs. We performed physiological and biological validations of the applied EIA to measure TMs and assessed diurnal fluctuations in TM excretions in male and female mice and across strains. We found that males excreted significantly more radiolabeled TMs via the feces (59%) compared to females (49.5%). TM excretion patterns differed significantly between urinary and fecal samples and were affected by the daytime of ³H-testosterone injection. Overall, TM excretion occurred faster in urinary than fecal samples. Peak excretion of fecal TMs occurred after 8 h when animals received the 3H-testosterone in the morning, or after 4 h when they received the 3H-testosterone injection in the evening. Daytime had no effect on the formed TMs; however, males and females formed different types of TMs. As expected, males showed higher fecal TM levels than females. Males also showed diurnal fluctuations in their TM levels but we found no differences in the TM levels of C57BL/6J and B6D2F1 hybrid males. Finally, we successfully validated our applied EIA (measuring 17β-hydroxyandrostane) by showing that hCG (human chorionic gonadotropin) administration increased TM levels, whereas castration reduced them. In conclusion, our EIA proved suitable for measuring fecal TMs in mice. Our non-invasive method to assess fecal TMs can be widely used in various research disciplines like animal behavior, reproduction, animal welfare, ecology, conservation, and biomedicine

    Urinary Analysis of Four Testosterone Metabolites and Pregnanediol by Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry after Oral Administrations of Testosterone

    Get PDF
    The most frequently used method to demonstrate testosterone abuse is the determination of the testosterone and epitestosterone concentration ratio (T/E ratio) in urine. Nevertheless, it is known that factors other than testosterone administration may increase the T/E ratio. In the last years, the determination of the carbon isotope ratio has proven to be the most promising method to help discriminate between naturally elevated T/E ratios and those reflecting T use. In this paper, an excretion study following oral administration of 40 mg testosterone undecanoate initially and 13 h later is presented. Four testosterone metabolites (androsterone, etiocholanolone, 5α-androstanediol, and 5β-androstanediol) together with an endogenous reference (5β-pregnanediol) were extracted from the urines and the δ13C/12C ratio of each compound was analyzed by gas chromatography-combustion-isotope ratio mass spectrometry. The results show similar maximum δ13C-value variations (parts per thousand difference of δ13C/12C ratio from the isotope ratio standard) for the T metabolites and concomitant changes of the T/E ratios after administration of the first and the second dose of T. Whereas the T/E ratios as well as the androsterone, etiocholanolone and 5α-androstanediol δ13C-values returned to the baseline 15 h after the second T administration, a decrease of the 5β-androstanediol δ-values could be detected for over 40 h. This suggests that measurements of 5β-androstanediol δ-values allow the detection of a testosterone ingestion over a longer post-administration period than other T metabolites δ13C-values or than the usual T/E ratio approac

    Alterations in Lipids and Adipocyte Hormones in Female-to-Male Transsexuals

    Get PDF
    Testosterone therapy in men and women results in decreased high-density lipoprotein cholesterol (HDL) and increased low-density lipoprotein cholesterol (LDL). We sought to determine whether testosterone therapy has this same effect on lipid parameters and adipocyte hormones in female-to-male (FTM) transsexuals. Twelve FTM transsexuals provided a fasting lipid profile including serum total cholesterol, HDL, LDL, and triglycerides prior to and after 1 year of testosterone therapy (testosterone enanthate or cypionate 50–125mg IM every two weeks). Subjects experienced a significant decrease in mean serum HDL (52 ± 11 to 40 ± 7mg/dL) (P < .001). The mean LDL (P = .316), triglyceride (P = .910), and total cholesterol (P = .769) levels remained unchanged. In a subset of subjects, we measured serum leptin levels which were reduced by 25% but did not reach statistical significance (P =.181) while resistin levels remained unchanged. We conclude that testosterone therapy in FTM transsexuals can promote an increased atherogenic lipid profile by lowering HDL and possibly reduce serum leptin levels. However, long-term studies are needed to determine whether decreases in HDL result in adverse cardiovascular outcomes.National Institutes of Health (M01RR000533

    Texture profile analysis reveals a stiffer ovarian cortex after testosterone therapy : a pilot study

    Get PDF
    Purpose: The importance of the surrounding ovarian stromal cells and extracellular matrix in the development and maturation of follicles has recently gained attention. An aberrant extracellular matrix has been described in ovaries of patients with polycystic ovary syndrome where a more rigid structural environment, possibly induced by endogenous testosterone, impairs normal folliculogenesis. In this context, we describe the textural parameters of the ovarian cortex of transgender men after prolonged testosterone administration compared to the textural parameters of the non-exposed ovarian cortex originating from female oncological patients. Methods: Texture profile analysis (TPA) was performed on ovarian cortex (5 x 5 mm) of oncological and transgender patients in order to measure stiffness, hardness, cohesiveness, and springiness of the ovarian cortex (LRXplus universal testing system). Statistical analysis was performed using repeated measurements mixed models and the Spearman rank order correlation test (IBM SPSS Statistics 23). Results: A total of 36 frozen-thawed cortical strips (5 x 5 mm) were subjected to TPA. The superficial part of cortex fragments originating from transgender persons (fragments < 1.4 mm; N = 10) appeared to be significantly stiffer compared to cortex derived from oncology patients (fragments < 1.4 mm; N = 7) (6.78 +/- 1.38 N/mm versus 5.41 +/- 0.9 N/mm respectively, p = 0.036). Conclusions: This is the first application of TPA in ovarian cortex to study the physical properties. Comparing the physical properties, we objectively describe an increased cortical stiffness in the most outer part of the ovarian cortex following prolonged testosterone administration in transgender men compared to the ovarian cortex of oncological patients. This preliminary and novel approach could be the start of future research to understand the physical properties of ovarian tissue

    Non-targeted LC-MS based metabolomics analysis of the urinary steroidal profile

    Get PDF
    The urinary steroidal fraction has been extensively explored as non-invasive alternative to monitor pathological conditions as well as to unveil the illicit intake of pseudo-endogenous anabolic steroids in sport. However, the majority of previous approaches involved the a priori selection of potentially relevant target analytes. Here we describe the non-targeted analysis of the urinary steroidal profiles. The workflow includes minimal sample pretreatment and normalization according to the specific gravity of urine, a 20 min reverse phase ultra-performance liquid chromatographic separation hyphenated to electrospray time-of-flight mass spectrometry. As initial validation, we analyzed a set of quality control urines spiked with glucurono- and sulfo-conjugated steroids at physiological ranges. We then applied the method for the analysis of samples collected after single transdermal administration of testosterone in hypogonadal men. The method allowed profiling of approximately three thousand metabolic features, including steroids of clinical and forensic relevance. It successfully identified metabolic pathways mostly responsible for groups clustering even in the context of high inter-individual variability and allowed the detection of currently unknown metabolic features correlating with testosterone administration. These outcomes set the stage for future studies aimed at implementing currently monitored urinary steroidal markers both in clinical and forensic analysis

    The unsolved case of “bone-impairing analgesics”. The endocrine effects of opioids on bone metabolism

    Get PDF
    The current literature describes the possible risks for bone fracture in chronic analgesics users. There are three main hypotheses that could explain the increased risk of fracture associated with central analgesics, such as opioids: 1) the increased risk of falls caused by central nervous system effects, including sedation and dizziness; 2) reduced bone mass density caused by the direct opioid effect on osteoblasts; and 3) chronic opioid-induced hypogonadism. The impact of opioids varies by sex and among the type of opioid used (less, for example, for tapentadol and buprenorphine). Opioid-associated androgen deficiency is correlated with an increased risk of osteoporosis; thus, despite that standards have not been established for monitoring and treating opioid-induced hypogonadism or hypoadrenalism, all patients chronically taking opioids (particularly at doses ≥100 mg morphine daily) should be monitored for the early detection of hormonal impairment and low bone mass density

    Weekly Versus Monthly Testosterone Administration On Fast and Slow Skeletal Muscle Fibers in Older Adult Males

    Get PDF
    Context: In older adults, loss of mobility due to sarcopenia is exacerbated in men with low serum T. T replacement therapy is known to increase muscle mass and strength, but the effect of weekly (WK) vs monthly (MO) administration on specific fiber types is unknown. Objective: To determine the efficacy of WK vs MO T replacement on the size and functional capacity of individual fast and slow skeletal muscle fiber types. Design, Setting, and Patients: Subjects were randomized into a 5-month, double-blind, placebo-controlled trial. All subjects (ages, 61–71 y) were community-dwelling men who had T levels \u3c 500 ng/dL. Intervention: Subjects were dosed weekly for 5 months, receiving continuous T (WK, n = 5; 100 mg T enanthate, im injection), monthly cycled T (MO, n = 7; alternating months of T and placebo), or placebo (n = 7). Muscle biopsies of the vastus lateralis were obtained before and after treatment. Main Outcome Measures: Main outcomes for individual slow and fast fibers included fiber diameter, peak force (P0), rate of tension development, maximal shortening velocity, peak power, and Ca2+ sensitivity. Results: Both treatments increased fiber diameter and peak power, with WK treatment 5-fold more effective than MO in increasing type I fiber P0. WK effects on fiber diameter and force were 1.5-fold higher in slow fibers compared to fast fibers. In fast type II fibers, diameter and P0 increased similarly between treatments. The increased power was entirely due to increased fiber size and force. Conclusions: In conclusion, T replacement effects were fiber-type dependent, restricted to increases in cell size, P0, and peak power, and dependent on the paradigm selected (WK vs MO)
    corecore