1,144 research outputs found

    Faithfulness and learning hypergraphs from discrete distributions

    Full text link
    The concepts of faithfulness and strong-faithfulness are important for statistical learning of graphical models. Graphs are not sufficient for describing the association structure of a discrete distribution. Hypergraphs representing hierarchical log-linear models are considered instead, and the concept of parametric (strong-) faithfulness with respect to a hypergraph is introduced. Strong-faithfulness ensures the existence of uniformly consistent parameter estimators and enables building uniformly consistent procedures for a hypergraph search. The strength of association in a discrete distribution can be quantified with various measures, leading to different concepts of strong-faithfulness. Lower and upper bounds for the proportions of distributions that do not satisfy strong-faithfulness are computed for different parameterizations and measures of association.Comment: 23 pages, 6 figure

    Toric algebra of hypergraphs

    Full text link
    The edges of any hypergraph parametrize a monomial algebra called the edge subring of the hypergraph. We study presentation ideals of these edge subrings, and describe their generators in terms of balanced walks on hypergraphs. Our results generalize those for the defining ideals of edge subrings of graphs, which are well-known in the commutative algebra community, and popular in the algebraic statistics community. One of the motivations for studying toric ideals of hypergraphs comes from algebraic statistics, where generators of the toric ideal give a basis for random walks on fibers of the statistical model specified by the hypergraph. Further, understanding the structure of the generators gives insight into the model geometry.Comment: Section 3 is new: it explains connections to log-linear models in algebraic statistics and to combinatorial discrepancy. Section 6 (open problems) has been moderately revise

    Kochen-Specker Sets and Generalized Orthoarguesian Equations

    Full text link
    Every set (finite or infinite) of quantum vectors (states) satisfies generalized orthoarguesian equations (nnOA). We consider two 3-dim Kochen-Specker (KS) sets of vectors and show how each of them should be represented by means of a Hasse diagram---a lattice, an algebra of subspaces of a Hilbert space--that contains rays and planes determined by the vectors so as to satisfy nnOA. That also shows why they cannot be represented by a special kind of Hasse diagram called a Greechie diagram, as has been erroneously done in the literature. One of the KS sets (Peres') is an example of a lattice in which 6OA pass and 7OA fails, and that closes an open question of whether the 7oa class of lattices properly contains the 6oa class. This result is important because it provides additional evidence that our previously given proof of noa =< (n+1)oa can be extended to proper inclusion noa < (n+1)oa and that nOA form an infinite sequence of successively stronger equations.Comment: 16 pages and 5 figure

    Describing the complexity of systems: multi-variable "set complexity" and the information basis of systems biology

    Full text link
    Context dependence is central to the description of complexity. Keying on the pairwise definition of "set complexity" we use an information theory approach to formulate general measures of systems complexity. We examine the properties of multi-variable dependency starting with the concept of interaction information. We then present a new measure for unbiased detection of multi-variable dependency, "differential interaction information." This quantity for two variables reduces to the pairwise "set complexity" previously proposed as a context-dependent measure of information in biological systems. We generalize it here to an arbitrary number of variables. Critical limiting properties of the "differential interaction information" are key to the generalization. This measure extends previous ideas about biological information and provides a more sophisticated basis for study of complexity. The properties of "differential interaction information" also suggest new approaches to data analysis. Given a data set of system measurements differential interaction information can provide a measure of collective dependence, which can be represented in hypergraphs describing complex system interaction patterns. We investigate this kind of analysis using simulated data sets. The conjoining of a generalized set complexity measure, multi-variable dependency analysis, and hypergraphs is our central result. While our focus is on complex biological systems, our results are applicable to any complex system.Comment: 44 pages, 12 figures; made revisions after peer revie
    • ā€¦
    corecore