13,979 research outputs found

    Limits on Support Recovery with Probabilistic Models: An Information-Theoretic Framework

    Get PDF
    The support recovery problem consists of determining a sparse subset of a set of variables that is relevant in generating a set of observations, and arises in a diverse range of settings such as compressive sensing, and subset selection in regression, and group testing. In this paper, we take a unified approach to support recovery problems, considering general probabilistic models relating a sparse data vector to an observation vector. We study the information-theoretic limits of both exact and partial support recovery, taking a novel approach motivated by thresholding techniques in channel coding. We provide general achievability and converse bounds characterizing the trade-off between the error probability and number of measurements, and we specialize these to the linear, 1-bit, and group testing models. In several cases, our bounds not only provide matching scaling laws in the necessary and sufficient number of measurements, but also sharp thresholds with matching constant factors. Our approach has several advantages over previous approaches: For the achievability part, we obtain sharp thresholds under broader scalings of the sparsity level and other parameters (e.g., signal-to-noise ratio) compared to several previous works, and for the converse part, we not only provide conditions under which the error probability fails to vanish, but also conditions under which it tends to one.Comment: Accepted to IEEE Transactions on Information Theory; presented in part at ISIT 2015 and SODA 201

    Tight conditions for consistency of variable selection in the context of high dimensionality

    Get PDF
    We address the issue of variable selection in the regression model with very high ambient dimension, that is, when the number of variables is very large. The main focus is on the situation where the number of relevant variables, called intrinsic dimension, is much smaller than the ambient dimension d. Without assuming any parametric form of the underlying regression function, we get tight conditions making it possible to consistently estimate the set of relevant variables. These conditions relate the intrinsic dimension to the ambient dimension and to the sample size. The procedure that is provably consistent under these tight conditions is based on comparing quadratic functionals of the empirical Fourier coefficients with appropriately chosen threshold values. The asymptotic analysis reveals the presence of two quite different re gimes. The first regime is when the intrinsic dimension is fixed. In this case the situation in nonparametric regression is the same as in linear regression, that is, consistent variable selection is possible if and only if log d is small compared to the sample size n. The picture is different in the second regime, that is, when the number of relevant variables denoted by s tends to infinity as n→∞n\to\infty. Then we prove that consistent variable selection in nonparametric set-up is possible only if s+loglog d is small compared to log n. We apply these results to derive minimax separation rates for the problem of variableComment: arXiv admin note: text overlap with arXiv:1102.3616; Published in at http://dx.doi.org/10.1214/12-AOS1046 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Sparse Support Vector Infinite Push

    Full text link
    In this paper, we address the problem of embedded feature selection for ranking on top of the list problems. We pose this problem as a regularized empirical risk minimization with pp-norm push loss function (p=∞p=\infty) and sparsity inducing regularizers. We leverage the issues related to this challenging optimization problem by considering an alternating direction method of multipliers algorithm which is built upon proximal operators of the loss function and the regularizer. Our main technical contribution is thus to provide a numerical scheme for computing the infinite push loss function proximal operator. Experimental results on toy, DNA microarray and BCI problems show how our novel algorithm compares favorably to competitors for ranking on top while using fewer variables in the scoring function.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012

    A Feature Selection Method for Multivariate Performance Measures

    Full text link
    Feature selection with specific multivariate performance measures is the key to the success of many applications, such as image retrieval and text classification. The existing feature selection methods are usually designed for classification error. In this paper, we propose a generalized sparse regularizer. Based on the proposed regularizer, we present a unified feature selection framework for general loss functions. In particular, we study the novel feature selection paradigm by optimizing multivariate performance measures. The resultant formulation is a challenging problem for high-dimensional data. Hence, a two-layer cutting plane algorithm is proposed to solve this problem, and the convergence is presented. In addition, we adapt the proposed method to optimize multivariate measures for multiple instance learning problems. The analyses by comparing with the state-of-the-art feature selection methods show that the proposed method is superior to others. Extensive experiments on large-scale and high-dimensional real world datasets show that the proposed method outperforms l1l_1-SVM and SVM-RFE when choosing a small subset of features, and achieves significantly improved performances over SVMperf^{perf} in terms of F1F_1-score

    Jointly Sparse Support Recovery via Deep Auto-encoder with Applications in MIMO-based Grant-Free Random Access for mMTC

    Full text link
    In this paper, a data-driven approach is proposed to jointly design the common sensing (measurement) matrix and jointly support recovery method for complex signals, using a standard deep auto-encoder for real numbers. The auto-encoder in the proposed approach includes an encoder that mimics the noisy linear measurement process for jointly sparse signals with a common sensing matrix, and a decoder that approximately performs jointly sparse support recovery based on the empirical covariance matrix of noisy linear measurements. The proposed approach can effectively utilize the feature of common support and properties of sparsity patterns to achieve high recovery accuracy, and has significantly shorter computation time than existing methods. We also study an application example, i.e., device activity detection in Multiple-Input Multiple-Output (MIMO)-based grant-free random access for massive machine type communications (mMTC). The numerical results show that the proposed approach can provide pilot sequences and device activity detection with better detection accuracy and substantially shorter computation time than well-known recovery methods.Comment: 5 pages, 8 figures, to be publised in IEEE SPAWC 2020. arXiv admin note: text overlap with arXiv:2002.0262
    • 

    corecore