68 research outputs found

    Strong Approximation of Empirical Copula Processes by Gaussian Processes

    Full text link
    We provide the strong approximation of empirical copula processes by a Gaussian process. In addition we establish a strong approximation of the smoothed empirical copula processes and a law of iterated logarithm

    A test for Archimedeanity in bivariate copula models

    Get PDF
    We propose a new test for the hypothesis that a bivariate copula is an Archimedean copula. The test statistic is based on a combination of two measures resulting from the characterization of Archimedean copulas by the property of associativity and by a strict upper bound on the diagonal by the Fr\'echet-upper bound. We prove weak convergence of this statistic and show that the critical values of the corresponding test can be determined by the multiplier bootstrap method. The test is shown to be consistent against all departures from Archimedeanity if the copula satisfies weak smoothness assumptions. A simulation study is presented which illustrates the finite sample properties of the new test.Comment: 18 pages, 2 figure

    Resampling Procedures with Empirical Beta Copulas

    Full text link
    The empirical beta copula is a simple but effective smoother of the empirical copula. Because it is a genuine copula, from which, moreover, it is particularly easy to sample, it is reasonable to expect that resampling procedures based on the empirical beta copula are expedient and accurate. In this paper, after reviewing the literature on some bootstrap approximations for the empirical copula process, we first show the asymptotic equivalence of several bootstrapped processes related to the empirical copula and empirical beta copula. Then we investigate the finite-sample properties of resampling schemes based on the empirical (beta) copula by Monte Carlo simulation. More specifically, we consider interval estimation for some functionals such as rank correlation coefficients and dependence parameters of several well-known families of copulas, constructing confidence intervals by several methods and comparing their accuracy and efficiency. We also compute the actual size and power of symmetry tests based on several resampling schemes for the empirical copula and empirical beta copula.Comment: 22 pages, 8 table

    Asymptotics of empirical copula processes under non-restrictive smoothness assumptions

    Full text link
    Weak convergence of the empirical copula process is shown to hold under the assumption that the first-order partial derivatives of the copula exist and are continuous on certain subsets of the unit hypercube. The assumption is non-restrictive in the sense that it is needed anyway to ensure that the candidate limiting process exists and has continuous trajectories. In addition, resampling methods based on the multiplier central limit theorem, which require consistent estimation of the first-order derivatives, continue to be valid. Under certain growth conditions on the second-order partial derivatives that allow for explosive behavior near the boundaries, the almost sure rate in Stute's representation of the empirical copula process can be recovered. The conditions are verified, for instance, in the case of the Gaussian copula with full-rank correlation matrix, many Archimedean copulas, and many extreme-value copulas.Comment: Published in at http://dx.doi.org/10.3150/11-BEJ387 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Large-sample tests of extreme-value dependence for multivariate copulas

    Full text link
    Starting from the characterization of extreme-value copulas based on max-stability, large-sample tests of extreme-value dependence for multivariate copulas are studied. The two key ingredients of the proposed tests are the empirical copula of the data and a multiplier technique for obtaining approximate p-values for the derived statistics. The asymptotic validity of the multiplier approach is established, and the finite-sample performance of a large number of candidate test statistics is studied through extensive Monte Carlo experiments for data sets of dimension two to five. In the bivariate case, the rejection rates of the best versions of the tests are compared with those of the test of Ghoudi, Khoudraji and Rivest (1998) recently revisited by Ben Ghorbal, Genest and Neslehova (2009). The proposed procedures are illustrated on bivariate financial data and trivariate geological data.Comment: 19 page

    Semiparametric multivariate density estimation for positive data using copulas

    Get PDF
    In this paper we estimate density functions for positive multivariate data. We propose a semiparametric approach. The estimator combines gamma kernels or local linear kernels, also called boundary kernels, for the estimation of the marginal densities with semiparametric copulas to model the dependence. This semiparametric approach is robust both to the well known boundary bias problem and the curse of dimensionality problem. We derive the mean integrated squared error properties, including the rate of convergence, the uniform strong consistency and the asymptotic normality. A simulation study investigates the finite sample performance of the estimator. We find that univariate least squares cross validation, to choose the bandwidth for the estimation of the marginal densities, works well and that the estimator we propose performs very well also for data with unbounded support. Applications in the field of finance are provided.asymptotic properties, asymmetric kernels, boundary bias, copula, curse of dimension, least squares cross validation

    Semiparametric Multivariate Density Estimation for Positive Data Using Copulas.

    Get PDF
    In this paper we estimate density functions for positive multivariate data. We propose a semiparametric approach. The estimator combines gamma kernels or local linear kernels, also called boundary kernels, for the estimation of the marginal densities with semiparametric copulas to model the dependence. This semiparametric approach is robust both to the well known boundary bias problem and the curse of dimensionality problem. We derive the mean integrated squared error properties, including the rate of convergence, the uniform strong consistency and the asymptotic normality. A simulation study investigates the finite sample performance of the estimator. We find that univariate least squares cross validation, to choose the bandwidth for the estimation of the marginal densities, works well and that the estimator we propose performs very well also for data with unbounded support. Applications in the field of finance are provided.Asymptotic properties, asymmetric kernels, boundary bias, copula, curse of dimension, least squares cross validation.

    A note on conditional versus joint unconditional weak convergence in bootstrap consistency results

    Full text link
    The consistency of a bootstrap or resampling scheme is classically validated by weak convergence of conditional laws. However, when working with stochastic processes in the space of bounded functions and their weak convergence in the Hoffmann-J{\o}rgensen sense, an obstacle occurs: due to possible non-measurability, neither laws nor conditional laws are well-defined. Starting from an equivalent formulation of weak convergence based on the bounded Lipschitz metric, a classical circumvent is to formulate bootstrap consistency in terms of the latter distance between what might be called a \emph{conditional law} of the (non-measurable) bootstrap process and the law of the limiting process. The main contribution of this note is to provide an equivalent formulation of bootstrap consistency in the space of bounded functions which is more intuitive and easy to work with. Essentially, the equivalent formulation consists of (unconditional) weak convergence of the original process jointly with two bootstrap replicates. As a by-product, we provide two equivalent formulations of bootstrap consistency for statistics taking values in separable metric spaces: the first in terms of (unconditional) weak convergence of the statistic jointly with its bootstrap replicates, the second in terms of convergence in probability of the empirical distribution function of the bootstrap replicates. Finally, the asymptotic validity of bootstrap-based confidence intervals and tests is briefly revisited, with particular emphasis on the, in practice unavoidable, Monte Carlo approximation of conditional quantiles.Comment: 21 pages, 1 Figur
    corecore