121,290 research outputs found

    Re-verification of a Lip Synchronization Algorithm using robust reachability

    Get PDF
    The timed automata formalism is an important model for specifying and analysing real-time systems. Robustness is the correctness of the model in the presence of small drifts on clocks or imprecision in testing guards. A symbolic algorithm for the analysis of the robustness of timed automata has been implemented. In this paper we re-analyse an industrial case lip synchronization protocol using the new robust reachability algorithm.This lip synchronization protocol is an interesting case because timing aspect are crucial for the correctness of the protocol. Several versions of the model are considered, with an ideal video stream, with anchored jitter, and with non-anchored jitter

    Re-verification of a Lip Synchronization Protocol using Robust Reachability

    Get PDF
    The timed automata formalism is an important model for specifying and analysing real-time systems. Robustness is the correctness of the model in the presence of small drifts on clocks or imprecision in testing guards. A symbolic algorithm for the analysis of the robustness of timed automata has been implemented. In this paper, we re-analyse an industrial case lip synchronization protocol using the new robust reachability algorithm. This lip synchronization protocol is an interesting case because timing aspects are crucial for the correctness of the protocol. Several versions of the model are considered: with an ideal video stream, with anchored jitter, and with non-anchored jitter

    Mind the gap between non-activated (non-aggressive) and activated (aggressive) indoor fungal testing: impact of pre-sampling environmental settings on indoor air readings

    Get PDF
    Indoor fungal testing has been within the researchers’ scope of interest for more than a century. Various sampling and analysis techniques have been developed over the years, but no testing protocol has been yet standardised and widely accepted by the research and practitioner communities. The diversity in fungal taxa within buildings with varied biological properties and implications on the health and wellbeing of the occupants and the building fabric complicates the decision-making process for selecting an appropriate testing protocol. This study aims to present a critical review of non-activated and activated approaches to indoor testing, with an emphasis on the preparation of the indoor environment prior to sampling. The study demonstrates the differences in the outcomes of non-activated and activated testing through a set of laboratory experiments in idealised conditions and a case study. The findings suggest that larger particles are particularly sensitive to the sampling height and activation, and that non-activated protocols, despite dominating the current literature, can significantly underestimate the fungal biomass and species richness. Therefore, this paper calls for better-defined and activated protocols that can enhance robustness and reproducibility across the research domain focused on indoor fungal testing

    Certified Quantum Measurement of Majorana Fermions

    Full text link
    We present a quantum self-testing protocol to certify measurements of fermion parity involving Majorana fermion modes. We show that observing a set of ideal measurement statistics implies anti-commutativity of the implemented Majorana fermion parity operators, a necessary prerequisite for Majorana detection. Our protocol is robust to experimental errors. We obtain lower bounds on the fidelities of the state and measurement operators that are linear in the errors. We propose to analyze experimental outcomes in terms of a contextuality witness WW, which satisfies W3\langle W \rangle \le 3 for any classical probabilistic model of the data. A violation of the inequality witnesses quantum contextuality, and the closeness to the maximum ideal value W=5\langle W \rangle=5 indicates the degree of confidence in the detection of Majorana fermions.Comment: 13 pages, 3 figure

    Test for a large amount of entanglement, using few measurements

    Get PDF
    Bell-inequality violations establish that two systems share some quantum entanglement. We give a simple test to certify that two systems share an asymptotically large amount of entanglement, n EPR states. The test is efficient: unlike earlier tests that play many games, in sequence or in parallel, our test requires only one or two CHSH games. One system is directed to play a CHSH game on a random specified qubit i, and the other is told to play games on qubits {i,j}, without knowing which index is i. The test is robust: a success probability within delta of optimal guarantees distance O(n^{5/2} sqrt{delta}) from n EPR states. However, the test does not tolerate constant delta; it breaks down for delta = Omega~(1/sqrt{n}). We give an adversarial strategy that succeeds within delta of the optimum probability using only O~(delta^{-2}) EPR states.Comment: 17 pages, 2 figures. Journal versio

    Indicators of Attack Failure: Debugging and Improving Optimization of Adversarial Examples

    Full text link
    Evaluating robustness of machine-learning models to adversarial examples is a challenging problem. Many defenses have been shown to provide a false sense of security by causing gradient-based attacks to fail, and they have been broken under more rigorous evaluations. Although guidelines and best practices have been suggested to improve current adversarial robustness evaluations, the lack of automatic testing and debugging tools makes it difficult to apply these recommendations in a systematic manner. In this work, we overcome these limitations by (i) defining a set of quantitative indicators which unveil common failures in the optimization of gradient-based attacks, and (ii) proposing specific mitigation strategies within a systematic evaluation protocol. Our extensive experimental analysis shows that the proposed indicators of failure can be used to visualize, debug and improve current adversarial robustness evaluations, providing a first concrete step towards automatizing and systematizing current adversarial robustness evaluations. Our open-source code is available at: https://github.com/pralab/IndicatorsOfAttackFailure
    corecore