2 research outputs found

    A Strong Composition Theorem for Junta Complexity and the Boosting of Property Testers

    Full text link
    We prove a strong composition theorem for junta complexity and show how such theorems can be used to generically boost the performance of property testers. The ε\varepsilon-approximate junta complexity of a function ff is the smallest integer rr such that ff is ε\varepsilon-close to a function that depends only on rr variables. A strong composition theorem states that if ff has large ε\varepsilon-approximate junta complexity, then g∘fg \circ f has even larger ε′\varepsilon'-approximate junta complexity, even for ε′≫ε\varepsilon' \gg \varepsilon. We develop a fairly complete understanding of this behavior, proving that the junta complexity of g∘fg \circ f is characterized by that of ff along with the multivariate noise sensitivity of gg. For the important case of symmetric functions gg, we relate their multivariate noise sensitivity to the simpler and well-studied case of univariate noise sensitivity. We then show how strong composition theorems yield boosting algorithms for property testers: with a strong composition theorem for any class of functions, a large-distance tester for that class is immediately upgraded into one for small distances. Combining our contributions yields a booster for junta testers, and with it new implications for junta testing. This is the first boosting-type result in property testing, and we hope that the connection to composition theorems adds compelling motivation to the study of both topics.Comment: 44 pages, 1 figure, FOCS 202
    corecore