136 research outputs found

    Test-Signal Search for Mixed-Signal Cores in a System-on-Chip

    Get PDF
    The well-known approach towards testing mixed-signal cores is functional testing and basically measuring key parameters of the core. However, especially if performance requirements increase, and embedded cores are considered, functional testing becomes technically and economically less attractive. A more cost-effective approach could be accomplished by a combination of reduced functional tests and added structural tests. In addition, it will also improve the debugging facilities of cores. Basic problem remains the large computational effort for analogue structural testing. In this paper, we introduce the concept of Testability Transfer Function for both analogue as well as digital parts in a mixed-signal core. This opens new possibilities for efficient structural testing of embedded mixed-signal cores, thereby adding to\ud the quality of tests

    Scan Test Coverage Improvement Via Automatic Test Pattern Generation (Atpg) Tool Configuration

    Get PDF
    The scan test coverage improvement by using automatic test pattern generation (ATPG) tool configuration was investigated. Improving the test coverage is essential in detecting manufacturing defects in semiconductor industry so that high quality products can be supplied to consumers. The ATPG tool used was Mentor Graphics Tessent TestKompress (version 2014.1). The study was done by setting up a few experiments of utilizing and modifying ATPG commands and switches, observing the test coverage improvement from the statistical reports provided during pattern generation process and providing relatable discussions. By modifying the ATPG commands, it can be expected to have some improvement in the test coverage. The scan test patterns generated were stuck-at test patterns. Based on the experiments done, comparison was made on the different coverage readings and the most optimized method and flow of ATPG were determined. The most optimized flow gave an improvement of 0.91% in test coverage which is acceptable since this method does not involve a change in design. The test patterns generated were converted and tested using automatic test equipment (ATE) to observe its performance on real silicon. The test coverage improvement using ATPG tool instead of the design-based method is important as a faster workaround for back-end engineers to provide high quality test contents in such a short product development duration

    Design-for-delay-testability techniques for high-speed digital circuits

    Get PDF
    The importance of delay faults is enhanced by the ever increasing clock rates and decreasing geometry sizes of nowadays' circuits. This thesis focuses on the development of Design-for-Delay-Testability (DfDT) techniques for high-speed circuits and embedded cores. The rising costs of IC testing and in particular the costs of Automatic Test Equipment are major concerns for the semiconductor industry. To reverse the trend of rising testing costs, DfDT is\ud getting more and more important

    Cost modelling and concurrent engineering for testable design

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.As integrated circuits and printed circuit boards increase in complexity, testing becomes a major cost factor of the design and production of the complex devices. Testability has to be considered during the design of complex electronic systems, and automatic test systems have to be used in order to facilitate the test. This fact is now widely accepted in industry. Both design for testability and the usage of automatic test systems aim at reducing the cost of production testing or, sometimes, making it possible at all. Many design for testability methods and test systems are available which can be configured into a production test strategy, in order to achieve high quality of the final product. The designer has to select from the various options for creating a test strategy, by maximising the quality and minimising the total cost for the electronic system. This thesis presents a methodology for test strategy generation which is based on consideration of the economics during the life cycle of the electronic system. This methodology is a concurrent engineering approach which takes into account all effects of a test strategy on the electronic system during its life cycle by evaluating its related cost. This objective methodology is used in an original test strategy planning advisory system, which allows for test strategy planning for VLSI circuits as well as for digital electronic systems. The cost models which are used for evaluating the economics of test strategies are described in detail and the test strategy planning system is presented. A methodology for making decisions which are based on estimated costing data is presented. Results of using the cost models and the test strategy planning system for evaluating the economics of test strategies for selected industrial designs are presented

    Defect-based testing of LTS digital circuits

    Get PDF
    A Defect-Based Test (DBT) methodology for Superconductor Electronics (SCE) is presented in this thesis, so that commercial production and efficient testing of systems can be implemented in this technology in the future. In the first chapter, the features and prospects for SCE have been presented. The motivation for this research and the outline of the thesis were also described in Chapter 1. It has been shown that high-end applications such as Software-Defined Radio (SDR) and petaflop computers which are extremely difficult to implement in top-of-the-art semiconductor technologies can be realised using SCE. But, a systematic structural test methodology had yet to be developed for SCE and has been addressed in this thesis. A detailed introduction to Rapid Single-Flux Quantum (RSFQ) circuits was presented in Chapter 2. A Josephson Junction (JJ) was described with associated theory behind its operation. The JJ model used in the simulator used in this research work was also presented. RSFQ logic with logic protocols as well as the design and implementation of an example D-type flip-flop (DFF) was also introduced. Finally, advantages and disadvantages of RSFQ circuits have been discussed with focus on the latest developments in the field. Various techniques for testing RSFQ circuits were discussed in Chapter 3. A Process Defect Monitor (PDM) approach was presented for fabrication process analysis. The presented defect-monitor structures were used to gather measurement data, to find the probability of the occurrence of defects in the process which forms the first step for Inductive Fault Analysis (IFA). Results from measurements on these structures were used to create a database for defects. This information can be used as input for performing IFA. "Defect-sprinkling" over a fault-free circuit can be carried out according to the measured defect densities over various layers. After layout extraction and extensive fault simulation, the resulting information will indicate realistic faults. In addition, possible Design-for-Testability (DfT) schemes for monitoring Single-Flux Quantum (SFQ) pulses within an RSFQ circuit has also been discussed in Chapter 3. The requirement for a DfT scheme is inevitable for RSFQ circuits because of their very high frequency of operation and very low operating temperature. It was demonstrated how SFQ pulses can be monitored at an internal node of an SCE circuit, introducing observability using Test-Point Insertion (TPI). Various techniques were discussed for the introduction of DfT and to avoid the delay introduced by the DfT structure if it is required. The available features in the proposed design for customising the detector make it attractive for a detailed DBT of RSFQ circuits. The control of internal nodes has also been illustrated using TPI. The test structures that were designed and implemented to determine the occurrence of defects in the processes can also be used to locate the position for the insertion of the above mentioned DfT structures

    Methods for testing of analog circuits

    Get PDF
    PrĂĄce se zabĂœvĂĄ metodami pro testovĂĄnĂ­ lineĂĄrnĂ­ch analogovĂœch obvodĆŻ v kmitočtovĂ© oblasti. CĂ­lem je navrhnout efektivnĂ­ metody pro automatickĂ© generovĂĄnĂ­ testovacĂ­ho plĂĄnu. SnĂ­ĆŸenĂ­m počtu měƙenĂ­ a vĂœpočetnĂ­ nĂĄročnosti lze vĂœrazně snĂ­ĆŸit nĂĄklady za testovĂĄnĂ­. PrĂĄce se zabĂœvĂĄ multifrekvečnĂ­ parametrickou poruchovou analĂœzou, kterĂĄ byla plně implementovĂĄna do programu Matlab. Vhodnou volbou testovacĂ­ch kmitočtĆŻ lze potlačit chyby měƙenĂ­ a chyby zpĆŻsobenĂ© vĂœrobnĂ­mi tolerancemi obvodovĂœch prvkĆŻ. NavrĆŸenĂ© metody pro optimĂĄlnĂ­ volbu kmitočtĆŻ byly statisticky ověƙeny metodou MonteCarlo. Pro zvĂœĆĄenĂ­ pƙesnosti a snĂ­ĆŸenĂ­ vĂœpočetnĂ­ nĂĄročnosti poruchovĂ© analĂœzy byly vyvinuty postupy zaloĆŸenĂ© na metodě nejmenĆĄĂ­ch čtvercĆŻ a pƙibliĆŸnĂ© symbolickĂ© analĂœze.The thesis deals with methods for testing of linear analog circuits in the frequency domain. The goal is to develop new efficient methods for automatic test plan generation. To reduce test costs a minimum number of measurements as well as less computational demands are the fundamental aims. The thesis is focused on the multi-frequency parametric fault diagnosis which was fully implemented in the Matlab program. The fundamental problem consists in selection of test frequencies which can reduce the influences of measurement errors and errors caused by tolerances of well-working components. The proposed methods for test frequency selection were statistically verified by the MonteCarlo method. To improve the accuracy and reduce the computational complexity of fault diagnosis, the methods based on least-square techniques and approximate symbolic analysis were presented.
    • 

    corecore