7,247,225 research outputs found
Rocket nozzle test method Patent
Method for testing rocket nozzles at high tensile stress level
Static coefficient test method and apparatus
The static coefficient of friction between contacting surfaces of a plurality of bodies is determined by applying a load to the bodies in a direction normal to the contacting surfaces. Opposite ends of a flexible filament are connected to a load cell and the first of the bodies. A motor continuously moves the second of the bodies away from the load cell at constant velocity at right angles to the force of the normal load so that the first body moves intermittently relative to the second body across a contact surface between them. The load on the surfaces, the nature of the surfaces, and the speed of the first body relative to the load cell are such that the filament is alternately and cyclically tensioned and relaxed as the movement occurs. The maximum tension occurs at the incipient stages of movement of the first body relative to the second body. The load cell derives a series of measurements which are coupled to an x-y recorder, from which the maximum forces of the filament are determined to enable the static coefficient of friction to be determined. From the maximum forces and the normal force, the coefficient is determined. For determining coefficients of friction where there are large compression loads, the normal load is applied with a calibrated compression spring that is deflected by a predetermined amount determined by a spring load vs. deflection calibration curve
Ignitability test method and apparatus
An apparatus for testing ignitability of an initiator includes a body with a central cavity, initiator holder for holding the initiator over the central cavity of the body, an ignition material holder disposed in the central cavity of the body and a cavity facing the initiator holder which receives a measured quantity of ignition material to be ignited by the initiator and a chamber in communication with the cavity of the ignition material holder and the central cavity of the body. A measuring system for analyzing pressure characteristics is generated by ignition material by the initiator. The measuring system includes at least one transducer coupled to an oscillograph for recording pressure traces generated by ignition
Nondestructive test method accurately sorts mixed bolts
Neutron activation analysis method sorts copper plated steel bolts from nickel plated steel bolts. Copper and nickel plated steel bolt specimens of the same configuration are irradiated with thermal neutrons in a test reactor for a short time. After thermal neutron irradiation, the bolts are analyzed using scintillation energy readout equipment
Is the Stack Distance Between Test Case and Method Correlated With Test Effectiveness?
Mutation testing is a means to assess the effectiveness of a test suite and
its outcome is considered more meaningful than code coverage metrics. However,
despite several optimizations, mutation testing requires a significant
computational effort and has not been widely adopted in industry. Therefore, we
study in this paper whether test effectiveness can be approximated using a more
light-weight approach. We hypothesize that a test case is more likely to detect
faults in methods that are close to the test case on the call stack than in
methods that the test case accesses indirectly through many other methods.
Based on this hypothesis, we propose the minimal stack distance between test
case and method as a new test measure, which expresses how close any test case
comes to a given method, and study its correlation with test effectiveness. We
conducted an empirical study with 21 open-source projects, which comprise in
total 1.8 million LOC, and show that a correlation exists between stack
distance and test effectiveness. The correlation reaches a strength up to 0.58.
We further show that a classifier using the minimal stack distance along with
additional easily computable measures can predict the mutation testing result
of a method with 92.9% precision and 93.4% recall. Hence, such a classifier can
be taken into consideration as a light-weight alternative to mutation testing
or as a preceding, less costly step to that.Comment: EASE 201
A quantum method to test the existence of consciousness
As we know, "Who can be said to be a conscious being?" is one of the hard problems in present science, and no method has been found to strictly differentiate the conscious being from the being without consciousness or usual matter. In this short paper, we present a strict physical method based on revised quantum dynamics to test the existence of consciousness, and the principle is to use the distinguishability of nonorthogonal single states. We demonstrate that although the dynamical collapse time can’t be measured by a physical measuring device, a conscious being can perceive it under the assumed QSC condition, thus can distinguish the nonorthogonal single states in the framework of revised quantum dynamics This in principle provides a quantum method to differentiate man and machine, or to test the existence of consciousness. We further discuss the rationality of the assumed QSC condition, and denote that some experimental evidences have indicated that our human being can satisfy the condition. This not only provides some confirmation of our method, but also indicates that the method is a practical proposal, which can be implemented in the near future experiments
- …
