652,910 research outputs found

    Searching for invariants using genetic programming and mutation testing

    Get PDF
    Invariants are concise and useful descriptions of a program's behaviour. As most programs are not annotated with invariants, previous research has attempted to automatically generate them from source code. In this paper, we propose a new approach to invariant generation using search. We reuse the trace generation front-end of existing tool Daikon and integrate it with genetic programming and a mutation testing tool. We demonstrate that our system can find the same invariants through search that Daikon produces via template instantiation, and we also find useful invariants that Daikon does not. We then present a method of ranking invariants such that we can identify those that are most interesting, through a novel application of program mutation

    A Survey on Software Testing Techniques using Genetic Algorithm

    Full text link
    The overall aim of the software industry is to ensure delivery of high quality software to the end user. To ensure high quality software, it is required to test software. Testing ensures that software meets user specifications and requirements. However, the field of software testing has a number of underlying issues like effective generation of test cases, prioritisation of test cases etc which need to be tackled. These issues demand on effort, time and cost of the testing. Different techniques and methodologies have been proposed for taking care of these issues. Use of evolutionary algorithms for automatic test generation has been an area of interest for many researchers. Genetic Algorithm (GA) is one such form of evolutionary algorithms. In this research paper, we present a survey of GA approach for addressing the various issues encountered during software testing.Comment: 13 Page

    Markovian Monte Carlo program EvolFMC v.2 for solving QCD evolution equations

    Full text link
    We present the program EvolFMC v.2 that solves the evolution equations in QCD for the parton momentum distributions by means of the Monte Carlo technique based on the Markovian process. The program solves the DGLAP-type evolution as well as modified-DGLAP ones. In both cases the evolution can be performed in the LO or NLO approximation. The quarks are treated as massless. The overall technical precision of the code has been established at 0.05% precision level. This way, for the first time ever, we demonstrate that with the Monte Carlo method one can solve the evolution equations with precision comparable to the other numerical methods.Comment: 38 pages, 9 Postscript figure

    Generation of topographic terrain models utilizing synthetic aperture radar and surface level data

    Get PDF
    Topographical terrain models are generated by digitally delineating the boundary of the region under investigation from the data obtained from an airborne synthetic aperture radar image and surface elevation data concurrently acquired either from an airborne instrument or at ground level. A set of coregistered boundary maps thus generated are then digitally combined in three dimensional space with the acquired surface elevation data by means of image processing software stored in a digital computer. The method is particularly applicable for generating terrain models of flooded regions covered entirely or in part by foliage

    Automating property-based testing of evolving web services

    Get PDF
    Web services are the most widely used service technology that drives the Service-Oriented Computing~(SOC) paradigm. As a result, effective testing of web services is getting increasingly important. In this paper, we present a framework and toolset for testing web services and for evolving test code in sync with the evolution of web services. Our approach to testing web services is based on the Erlang programming language and QuviQ QuickCheck, a property-based testing tool written in Erlang, and our support for test code evolution is added to Wrangler, the Erlang refactoring tool. The key components of our system include the automatic generation of initial test code, the inference of web service interface changes between versions, the provision of a number of domain specific refactorings and the automatic generation of refactoring scripts for evolving the test code. Our framework provides users with a powerful and expressive web service testing framework, while minimising users' effort in creating, maintaining and evolving the test model. The framework presented in this paper can be used by both web service providers and consumers, and can be used to test web services written in whatever language; the approach advocated here could also be adopted in other property-based testing frameworks and refactoring tools

    An integrated search-based approach for automatic testing from extended finite state machine (EFSM) models

    Get PDF
    This is the post-print version of the Article - Copyright @ 2011 ElsevierThe extended finite state machine (EFSM) is a modelling approach that has been used to represent a wide range of systems. When testing from an EFSM, it is normal to use a test criterion such as transition coverage. Such test criteria are often expressed in terms of transition paths (TPs) through an EFSM. Despite the popularity of EFSMs, testing from an EFSM is difficult for two main reasons: path feasibility and path input sequence generation. The path feasibility problem concerns generating paths that are feasible whereas the path input sequence generation problem is to find an input sequence that can traverse a feasible path. While search-based approaches have been used in test automation, there has been relatively little work that uses them when testing from an EFSM. In this paper, we propose an integrated search-based approach to automate testing from an EFSM. The approach has two phases, the aim of the first phase being to produce a feasible TP (FTP) while the second phase searches for an input sequence to trigger this TP. The first phase uses a Genetic Algorithm whose fitness function is a TP feasibility metric based on dataflow dependence. The second phase uses a Genetic Algorithm whose fitness function is based on a combination of a branch distance function and approach level. Experimental results using five EFSMs found the first phase to be effective in generating FTPs with a success rate of approximately 96.6%. Furthermore, the proposed input sequence generator could trigger all the generated feasible TPs (success rate = 100%). The results derived from the experiment demonstrate that the proposed approach is effective in automating testing from an EFSM

    A Domain-Specific Language and Editor for Parallel Particle Methods

    Full text link
    Domain-specific languages (DSLs) are of increasing importance in scientific high-performance computing to reduce development costs, raise the level of abstraction and, thus, ease scientific programming. However, designing and implementing DSLs is not an easy task, as it requires knowledge of the application domain and experience in language engineering and compilers. Consequently, many DSLs follow a weak approach using macros or text generators, which lack many of the features that make a DSL a comfortable for programmers. Some of these features---e.g., syntax highlighting, type inference, error reporting, and code completion---are easily provided by language workbenches, which combine language engineering techniques and tools in a common ecosystem. In this paper, we present the Parallel Particle-Mesh Environment (PPME), a DSL and development environment for numerical simulations based on particle methods and hybrid particle-mesh methods. PPME uses the meta programming system (MPS), a projectional language workbench. PPME is the successor of the Parallel Particle-Mesh Language (PPML), a Fortran-based DSL that used conventional implementation strategies. We analyze and compare both languages and demonstrate how the programmer's experience can be improved using static analyses and projectional editing. Furthermore, we present an explicit domain model for particle abstractions and the first formal type system for particle methods.Comment: Submitted to ACM Transactions on Mathematical Software on Dec. 25, 201
    • …
    corecore