111,082 research outputs found
Submarine depositional terraces at Salina Island (Southern Tyrrhenian Sea) and implications on the Late-Quaternary evolution of the insular shelf
The integrated analysis of high-resolution multibeam bathymetry and single-channel seismic profiles around Salina Island allowed us to characterize the stratigraphic architecture of the insular shelf. The shelf is formed by a gently-sloping erosive surface carved on the volcanic bedrock, mostly covered by sediments organized in a suite of terraced bodies, i.e. submarine depositional terraces. Based on their position on the shelf, depth range of their edge and inner geometry, different orders of terraces can be distinguished. The shallowest terrace (near-shore terrace) is a sedimentary prograding wedge, whose formation can be associated to the downward transport of sediments from the surf zone and shoreface during stormy conditions. According to the range depth of the terrace edge (i.e., 10–25 m, compatible with the estimated present-day, local storm-wave base level in the central and western Mediterranean), the formation of this wedge can be attributed to the present-day highstand. By assuming a similar genesis for the deeper terraces, mid-shelf terraces having the edge at depths of 40–50 m and 70–80 m can be attributed to the late and early stages of the Post-LGM transgression, respectively. Finally, the deepest terrace (shelf-edge terrace) has the edge at depths of 130–160 m, being thus referable to the lowstand occurred at ca. 20 ka. Based on the variability of edge depth in the different sectors, we also show how lowstand terraces can be used to provide insights on the recent vertical movements that affected Salina edifice in the last 20 ka, highlighting more generally their possible use for neo-tectonic studies elsewhere. Moreover, being these terraces associated to different paleo-sea levels, they can be used to constrain the relative age of the different erosive stages affecting shallow-water sectors
Facettes of terrace-building in the culture of the Pero, Longuda and Tula people in north-eastern Nigeria
In the culture of the Pero, Longuda and Tula People in the south-eastern part of Bauchi State, north-eastern Nigeria, terraces are found as traditional means to improve the environmental condition and to secure the survival of the people. To classify those terraces according to their form and function, the techniques and customs of their building and the traditional structures of their development they have to be compared in the context of their own culture. The paper gives a few examples showing that the importance of terraces for the historic and religious concepts of the Pero, Longuda and Tula People is expressed through a tight network of oral traditions, social and religious customs and structures of belief and explanation, which, once they were woven together, eventually build what a malam from Tula called a glue of inheritance, identity, integrity, continuity and security
Disorder induced local density of states oscillations on narrow Ag(111) terraces
The local density of states of Ag(111) has been probed in detail on
disordered terraces of varying width by dI/dV-mapping with a scanning tunneling
microscope at low temperatures. Apparent shifts of the bottom of the
surface-state band edge from terrace induced confinement are observed.
Disordered terraces show interesting contrast reversals in the dI/dV maps as a
function of tip-sample voltage polarity with details that depend on the average
width of the terrace and the particular edge profile. In contrast to perfect
terraces with straight edges, standing wave patterns are observed parallel to
the step edges, i.e. in the non-confined direction. Scattering calculations
based on the Ag(111) surface states reproduce these spatial oscillations and
all the qualitative features of the standing wave patterns, including the
polarity-dependent contrast reversals.Comment: 19 pages, 12 figure
Step Bunching with Alternation of Structural Parameters
By taking account of the alternation of structural parameters, we study
bunching of impermeable steps induced by drift of adatoms on a vicinal face of
Si(001). With the alternation of diffusion coefficient, the step bunching
occurs irrespective of the direction of the drift if the step distance is
large. Like the bunching of permeable steps, the type of large terraces is
determined by the drift direction. With step-down drift, step bunches grows
faster than those with step-up drift. The ratio of the growth rates is larger
than the ratio of the diffusion coefficients. Evaporation of adatoms, which
does not cause the step bunching, decreases the difference. If only the
alternation of kinetic coefficient is taken into account, the step bunching
occurs with step-down drift. In an early stage, the initial fluctuation of the
step distance determines the type of large terraces, but in a late stage, the
type of large terraces is opposite to the case of alternating diffusion
coefficient.Comment: 8pages, 16 figure
Electron states of mono- and bilayer graphene on SiC probed by STM
We present a scanning tunneling microscopy (STM) study of a
gently-graphitized 6H-SiC(0001) surface in ultra high vacuum. From an analysis
of atomic scale images, we identify two different kinds of terraces, which we
unambiguously attribute to mono- and bilayer graphene capping a C-rich
interface. At low temperature, both terraces show
quantum interferences generated by static impurities. Such interferences are a
fingerprint of -like states close to the Fermi level. We conclude that the
metallic states of the first graphene layer are almost unperturbed by the
underlying interface, in agreement with recent photoemission experiments (A.
Bostwick et al., Nature Physics 3, 36 (2007))Comment: 4 pages, 3 figures submitte
Coastal Terraces, Sea Level, and Active Tectonics
In this exercise, students investigate the use of coastal landforms from ancient shorelines in studying tectonic movements. Introductory materials explain how coastal landforms are classified on the basis of sediment supply and positions of the land relative to sea level, and describe the features of erosional coastal terraces. Using data on the coastal terraces of San Clemente Island, off the coast of Southern California, students will construct a topographic profile, measure shoreline angles, and calculate rates of uplift of the island relative to the sea. The exercise includes a map and stereo pair, data on sea level fluctuations and ages of coastal terraces, and a problem set with study questions. A bibliography is also provided. Educational levels: High school, Undergraduate lower division
Influence of topography and Co domain walls on the magnetization reversal of the FeNi layer in FeNi/AlO/Co magnetic tunnel junctions
We have studied the magnetization reversal dynamics of FeNi/AlO/Co
magnetic tunnel junctions deposited on step-bunched Si substrates using
magneto-optical Kerr effect and time-resolved x-ray photoelectron emission
microscopy combined with x-ray magnetic circular dichroism (XMCD-PEEM).
Different reversal mechanisms have been found depending on the substrate miscut
angle. Larger terraces (smaller miscut angles) lead to a higher nucleation
density and stronger domain wall pinning. The width of domain walls with
respect to the size of the terraces seems to play an important role in the
reversal. We used the element selectivity of XMCD-PEEM to reveal the strong
influence of the stray field of domain walls in the hard magnetic layer on the
magnetic switching of the soft magnetic layer.Comment: 8 Pages, 7 Figure
- …
